Robotics II

January 11, 2018

Exercise 1

The RP planar robot in Fig. 1, with coordinates $\boldsymbol{q}=\left(q_{1}, q_{2}\right)$ and parameters $m_{2}, d_{c 2}, I_{1}$ and I_{2} defined therein, should execute a task defined by a time-varying trajectory $y_{d}(t) \in \mathbb{R}$ for the height of its end-effector.

Figure 1: A RP planar robot with the relevant parameters and variables.
Assuming as input command the joint velocity $\dot{\boldsymbol{q}} \in \mathbb{R}^{2}$, determine the explicit expressions of the kinematic control laws that execute the task in nominal conditions, recover exponentially from any task error, and

- minimize $\frac{1}{2}\|\dot{\boldsymbol{q}}\|^{2}$: which is the theoretical pitfall of this solution?
- minimize the weighted norm $\frac{1}{2} \dot{\boldsymbol{q}}^{T} \boldsymbol{W} \dot{\boldsymbol{q}}$, with constant $\boldsymbol{W}=\operatorname{diag}\left\{w_{1}, w_{2}\right\}>0$; what happens for very large ratios w_{1} / w_{2} (in the limit $\rightarrow \infty$); and for $w_{2} / w_{1} \rightarrow \infty$?
- minimize the kinetic energy $T=\frac{1}{2} \dot{\boldsymbol{q}}^{T} \boldsymbol{M}(\boldsymbol{q}) \dot{\boldsymbol{q}}$, being $\boldsymbol{M}(\boldsymbol{q})>0$ the robot inertia matrix.

Exercise 2

Figure 2: The Boulton-Watt governor and a scheme with definition of parameters and variables.
Figure 2 shows a picture and a simplified scheme of the famous Boulton-Watt centrifugal governor, a system invented to regulate the rotational speed of a steam engine by a mechanical leverage (feedback) opening a valve that provides steam under pressure to the engine. We consider here only the so-called open-loop dynamic behavior of the system, under the action of an external torque $\tau \in \mathbb{R}$ applied to the main rotating shaft.

Assume that:

- the main shaft has an inertia I_{s} around its rotation axis
- the two balls have identical mass m that is concentrated at the end of a link of length L
- the links and all other linkages have negligible masses
- a viscous friction torque with coefficient $f_{v}>0$ is acting on the main shaft
- all other frictional effects are negligible.

Derive the complete dynamic model of this system using a Lagrangian formalism. Assuming knowledge of the geometric parameter L, provide a linear parametrization of the dynamics in terms of its dynamic coefficients. Find the value of the constant torque τ_{Ω} to be applied for sustaining a steady-state rotation at a given angular speed $\Omega>0$. Finally, design a nonlinear feedback for τ so as to achieve partial feedback linearization of the system, i.e., exact linearization by feedback of only part of the closed-loop dynamics, in this case of one of the two coordinates.

Exercise 3

Consider the design of impedance control laws and force control laws for the 1-dof example, shown in Fig. 33 namely a single mass m that moves on a frictionless horizontal plane under the action of a commanded force $f \in \mathbb{R}$ and of a contact force $f_{c} \in \mathbb{R}$.

Figure 3: A mass m subject to a commanded force f and a contact force f_{c}.
In particular:

- The impedance controllers should work with a generic time-varying, smooth position reference $x_{d}(t)$, either with or without the use of a load cell that can measure the contact force f_{c}. Illustrate the properties of the obtained closed-loop systems.
- What happens when $x_{d}(t)$ degenerates to a constant? What happens during free motion, when $f_{c}=0$?
- For $m=5[\mathrm{~kg}]$, design the control parameters of the impedance law so that the dynamics of the position error $e=x_{d}-x$ in the closed-loop system is characterized by a pair of asymptotically stable complex poles with natural frequency $\omega_{n}=10[\mathrm{rad} / \mathrm{s}]$ and critical damping ratio $\zeta=0.7071$.
- On the other hand, the force controllers should be able to regulate the (measured) contact force f_{c} to a constant value f_{d}, using any combination of desired force feedforward and force error feedback. Illustrate the properties of the obtained closed-loop systems.
- What happens during free motion, when $f_{c}=0$ and a constant contact force f_{d} is desired?

Solution

January 11, 2018

Exercise 1

The problem deals with kinematic redundancy since the RP robot has $n=2$ joints and the required task is scalar $m=1$. The task output function and its Jacobian are

$$
y(\boldsymbol{q})=q_{2} \sin q_{1}, \quad \boldsymbol{J}(\boldsymbol{q})=\frac{\partial y(\boldsymbol{q})}{\partial \boldsymbol{q}}=\left(\begin{array}{ll}
q_{2} \cos q_{1} & \sin q_{1} \tag{1}
\end{array}\right) .
$$

The 1×2 task Jacobian loses rank (vanishes) iff $q_{1}=\{0, \pi\}$ and $q_{2}=0$ simultaneously.
The minimization of the squared norm of $\dot{\boldsymbol{q}}$ is achieved by the use of the pseudoinverse of the task Jacobian. Out of singularities, $\boldsymbol{J}^{\#}=\boldsymbol{J}^{T}\left(\boldsymbol{J} \boldsymbol{J}^{T}\right)^{-1}$ and the kinematic control law takes the expression

$$
\begin{equation*}
\dot{\boldsymbol{q}}=\boldsymbol{J}^{\#}(\boldsymbol{q})\left(\dot{y}_{d}+k\left(y_{d}-y(\boldsymbol{q})\right)\right)=\frac{1}{s_{1}^{2}+q_{2}^{2} c_{1}^{2}}\binom{q_{2} c_{1}}{s_{1}}\left(\dot{y}_{d}+k\left(y_{d}-q_{2} \sin q_{1}\right)\right), \tag{2}
\end{equation*}
$$

where $k>0$ is a control gain that guarantees exponential recovery from transient errors, i.e., $\dot{e}(t)=-k e(t)$, with $e=y_{d}-q_{2} \sin q_{1} \neq 0$, during task execution. The pitfall of 22 is that the norm $\|\dot{\boldsymbol{q}}\|$ involves mixed angular (the revolute joint velocity \dot{q}_{1}) and linear (the prismatic joint velocity \dot{q}_{2}) quantities, so its straight minimization is ill-defined conceptually. In fact, the denominator in (2) contains the sum of an non-dimensional term $\left(s_{1}^{2}\right)$ and of a term with (squared) length units. Stated differently, changing the representing units (e.g., from 1 m to 100 cm) will change the 'optimal' solution.
The minimization of the weighted norm $\frac{1}{2} \dot{\boldsymbol{q}}^{T} \boldsymbol{W} \dot{\boldsymbol{q}}$, leading to weighted pseudoinversion of the task Jacobian, may solve this theoretical issue. In particular, the units of the (positive) elements in the diagonal of \boldsymbol{W} can be used to make terms non-dimensional (e.g., by choosing w_{1} in (squared) length units). Out of singularities, $\boldsymbol{J}_{\boldsymbol{W}}^{\#}=\boldsymbol{W}^{-1} \boldsymbol{J}^{T}\left(\boldsymbol{J} \boldsymbol{W}^{-1} \boldsymbol{J}^{T}\right)^{-1}$ and the kinematic control law takes the expression

$$
\begin{equation*}
\dot{\boldsymbol{q}}=\boldsymbol{J}_{\boldsymbol{W}}^{\#}(\boldsymbol{q})\left(\dot{y}_{d}+k\left(y_{d}-y(\boldsymbol{q})\right)\right)=\frac{1}{\frac{q_{2}^{2} c_{1}^{2}}{w_{1}}+\frac{s_{1}^{2}}{w_{2}}}\binom{\frac{q_{2} c_{1}}{w_{1}}}{\frac{s_{1}}{w_{2}}}\left(\dot{y}_{d}+k\left(y_{d}-q_{2} \sin q_{1}\right)\right) \tag{3}
\end{equation*}
$$

with $k>0$ as before. Indeed, different values of the weights w_{1} and w_{2} will lead to different joint velocity solutions. It is easy to verify that is the relative ratio between w_{1} and w_{2} that really matters. For very large ratios w_{1} / w_{2}, the cost of moving the (revolute) joint 1 will be dominant and therefore the solution (3) will tend to minimize its motion while performing the task. In the limit, when $w_{1} \rightarrow \infty$, it follows from (3) that $\dot{q}_{1} \rightarrow 0$, while $\dot{q}_{2} \propto 1 / s_{1}$: therefore, executing the task will become more and more problematic as the second link gets closer to the horizontal. Similarly, for $w_{2} / w_{1} \rightarrow \infty$ the second (prismatic) joint will be very expensive to move, while $\dot{q}_{1} \propto 1 / q_{2} c_{1}$: the control effort will increase dramatically when the second link is close to being vertical ($c_{1} \simeq 0$) and/or fully retracted ($q_{2} \simeq 0$).
For the third objective, we need first to derive the inertia matrix of the RP robot. From the expression of the kinetic energy $T=T_{1}+T_{2}$, with
$T_{1}=\frac{1}{2} I_{1} \dot{q}_{1}^{2}, \quad T_{2}=\frac{1}{2} m_{2}\left\|\frac{d}{d t}\binom{\left(q_{2}-d_{c 2}\right) \cos q_{1}}{\left(q_{2}-d_{c 2}\right) \sin q_{1}}\right\|^{2}+\frac{1}{2} I_{2} \dot{q}_{1}^{2}=\frac{1}{2}\left(I_{2}+m_{2}\left(q_{2}-d_{c 2}\right)^{2}\right) \dot{q}_{1}^{2}+\frac{1}{2} m_{2} \dot{q}_{2}^{2}$,
we obtain a diagonal inertia matrix as

$$
\boldsymbol{M}(\boldsymbol{q})=\left(\begin{array}{cc}
I_{1}+I_{2}+m_{2}\left(q_{2}-d_{c 2}\right)^{2} & 0 \tag{4}\\
0 & m_{2}
\end{array}\right)=\left(\begin{array}{cc}
m_{11}\left(q_{2}\right) & 0 \\
0 & m_{22}
\end{array}\right)
$$

The minimization of the kinetic energy T is then a special case of a weighted pseudoinversion of the task Jacobian, with one weight being configuration dependent. Thus, out of singularities, the inertia-weighted kinematic control law takes the expression

$$
\begin{equation*}
\dot{\boldsymbol{q}}=\boldsymbol{J}_{\boldsymbol{M}}^{\#}(\boldsymbol{q})\left(\dot{y}_{d}+k\left(y_{d}-y(\boldsymbol{q})\right)\right)=\frac{1}{\frac{q_{2}^{2} c_{1}^{2}}{m_{11}\left(q_{2}\right)}+\frac{s_{1}^{2}}{m_{22}}}\binom{\frac{q_{2} c_{1}}{m_{11}\left(q_{2}\right)}}{\frac{s_{1}}{m_{22}}}\left(\dot{y}_{d}+k\left(y_{d}-q_{2} \sin q_{1}\right)\right) \tag{5}
\end{equation*}
$$

Note that the two addends in the first denominator have both consistent units of $\left[\mathrm{kg}^{-1}\right]$.

Exercise 2

Let $\boldsymbol{q}=(\theta, \phi)$. Following a Lagrangian approach, under the given assumptions, we compute the kinetic energy $T=T_{s}+2 T_{m}$ for the main shaft and the two equal balls. We have

$$
T_{s}=\frac{1}{2} I_{s} \dot{\theta}^{2}, \quad T_{m}=\frac{1}{2} m L^{2}\left(\dot{\phi}^{2}+\dot{\theta}^{2} \sin ^{2} \phi\right),
$$

and thus the diagonal inertia matrix

$$
\boldsymbol{M}(\boldsymbol{q})=\left(\begin{array}{cc}
I_{s}+2 m L^{2} \sin ^{2} \phi & 0 \tag{6}\\
0 & 2 m L^{2}
\end{array}\right)
$$

Using the Christoffel symbols, the Coriolis and centrifugal terms are easily computed from (6) as

$$
\begin{equation*}
\boldsymbol{c}(\boldsymbol{q}, \dot{\boldsymbol{q}})=\binom{4 m L^{2} \sin \phi \cos \phi \dot{\theta} \dot{\phi}}{-2 m L^{2} \sin \phi \cos \phi \dot{\theta}^{2}}=m L^{2} \sin (2 \phi)\binom{2 \dot{\theta} \dot{\phi}}{-\dot{\theta}^{2}} \tag{7}
\end{equation*}
$$

For the potential energy due to gravity, $U=U_{s}+2 U_{m}$, we have (up to a constant)

$$
U_{s}=0, \quad U_{m}=-m g_{0} L \cos \phi,
$$

and thus

$$
\begin{equation*}
\boldsymbol{g}(\boldsymbol{q})=\left(\frac{\partial U(\boldsymbol{q})}{\partial \boldsymbol{q}}\right)^{T}=\binom{0}{2 m g_{0} L \sin \phi} \tag{8}
\end{equation*}
$$

Including also viscous friction on the main shaft, the dynamic equations are

$$
\begin{align*}
\left(I_{s}+2 m L^{2} \sin ^{2} \phi\right) \ddot{\theta}+4 m L^{2} \sin \phi \cos \phi \dot{\theta} \dot{\phi}+f_{v} \dot{\theta} & =\tau \\
2 m L^{2} \ddot{\phi}-2 m L^{2} \sin \phi \cos \phi \dot{\theta}^{2}+2 m g_{0} L \sin \phi & =0 \tag{9}
\end{align*}
$$

Assuming knowledge of the geometric parameter L, equation (9) can be expressed in the linearly parametrized form

$$
\left(\begin{array}{ccc}
\ddot{\theta} & 2 L^{2} \sin ^{2} \phi \ddot{\theta}+2 L^{2} \sin (2 \phi) \dot{\theta} \dot{\phi} & \dot{\theta} \tag{10}\\
0 & 2 L^{2} \ddot{\phi}-L^{2} \sin (2 \phi) \dot{\theta}^{2}+2 g_{0} L \sin \phi & 0
\end{array}\right)\left(\begin{array}{l}
I_{s} \\
m \\
f_{v}
\end{array}\right)=\boldsymbol{Y}(\boldsymbol{q}, \dot{\boldsymbol{q}}, \ddot{\boldsymbol{q}}) \boldsymbol{\pi}=\binom{\tau}{0},
$$

with the vector $\pi \in \mathbb{R}^{3}$ of dynamic coefficients.
In a steady-state equilibrium with constant angular velocity $\dot{\theta}=\Omega>0$, we have $\ddot{\theta}=0$ and $\ddot{\phi}=\dot{\phi}=0$. This yields from (9)

$$
\begin{equation*}
\tau_{\Omega}=f_{v} \Omega, \quad L \sin \phi \cos \phi \Omega^{2}+g_{0} \sin \phi=0 \quad \Rightarrow \quad \cos \phi_{e}=\frac{g_{0}}{L \Omega^{2}} \tag{11}
\end{equation*}
$$

The input torque τ_{Ω} has to compensate just for the energy loss due to friction, in order to keep a uniform motion via constant angular velocity. Moreover, the equilibrium angle ϕ_{e} results from the balance of the gravity force and the centrifugal force. Its value increases (in the range $(0, \pi / 2)$) together with Ω.
Finally, by applying the nonlinear feedback law

$$
\begin{equation*}
\tau=\left(I_{s}+2 m L^{2} \sin ^{2} \phi\right) a+4 m L^{2} \sin \phi \cos \phi \dot{\theta} \dot{\phi}+f_{v} \dot{\theta} \tag{12}
\end{equation*}
$$

where $a \in \mathbb{R}$ is the new control input (an acceleration), system (9) is transformed into

$$
\begin{align*}
\ddot{\theta} & =a \\
\ddot{\phi}-\sin \phi \cos \phi \dot{\theta}^{2}+\frac{g_{0}}{L} \sin \phi & =0 . \tag{13}
\end{align*}
$$

The dynamics of θ is now exactly linear (a double integrator), while partial control of the motion of ϕ can be achieved only through the centrifugal term in the second equation, being $\dot{\theta}^{2}=\left(\int a d t\right)^{2}$.

Exercise 3

The dynamic equation of the system in Fig. 3 is

$$
\begin{equation*}
m \ddot{x}=f+f_{c} . \tag{14}
\end{equation*}
$$

Impedance control. The so-called inverse dynamics control law becomes in this simple case

$$
\begin{equation*}
f=m a-f_{c}, \tag{15}
\end{equation*}
$$

and transforms system (14) into the double integrator

$$
\begin{equation*}
\ddot{x}=a . \tag{16}
\end{equation*}
$$

The auxiliary input a has to be designed so that the controlled mass m, under the action of the contact force f_{c}, matches the behavior of an impedance model characterized by a desired (apparent) mass $m_{d}>0$, desired damping $k_{d}>0$, and desired stiffness $k_{p}>0$, all acting with respect to a smooth motion reference $x_{d}(t)$, or

$$
\begin{equation*}
m_{d}\left(\ddot{x}-\ddot{x}_{d}\right)+k_{d}\left(\dot{x}-\dot{x}_{d}\right)+k_{p}\left(x-x_{d}\right)=f_{c} . \tag{17}
\end{equation*}
$$

Equating \ddot{x} in (16) and in the reference behavior (17), solving for a and substituting in (15) yields the control force

$$
\begin{equation*}
f=\frac{m}{m_{d}}\left(\ddot{x}_{d}+k_{d}\left(\dot{x}_{d}-\dot{x}\right)+k_{p}\left(x_{d}-x\right)\right)+\left(\frac{m}{m_{d}}-1\right) f_{c} . \tag{18}
\end{equation*}
$$

The feedback law (18) requires in general a measure of the contact force f_{c}.

In the reference model $\sqrt{17}$), the position error $e=x_{d}-x$ does not converge to zero if there is a contact force f_{c}. Otherwise, e will asymptotically go to zero -indeed exponentially, in view of the linearity of the system dynamics. In particular, for $k_{d}^{2}<4 k_{p} m_{d}$, the obtained second-order linear system 17 is characterized by a pair of asymptotically stable complex poles with natural frequency and damping ratio given by

$$
\begin{equation*}
\omega_{n}=\sqrt{\frac{k_{p}}{m_{d}}}, \quad \zeta=\frac{k_{d}}{2 \sqrt{k_{p} m_{d}}} \tag{19}
\end{equation*}
$$

Reducing the desired mass m_{d}, for given values of stiffness and damping, will increase both the natural frequency ω_{n} and the damping ratio ζ, and thus improve transients. On the other hand, for a given mass m_{d}, an increase of the stiffness k_{p} should be accompanied by an increase of the damping k_{d} in order to prevent more oscillatory transients. If the desired mass equals the natural (original) mass, i.e., $m_{d}=m$, a measure of the contact force f_{c} is no longer needed in the impedance controller (18).
Wishing to achieve $\omega_{n}=10$ and $\zeta=0.7071=1 / \sqrt{2}$, equations 19 provide

$$
\begin{equation*}
k_{p}=100 m_{d}, \quad k_{d}=10 \sqrt{2} m_{d}, \quad \text { for any } m_{d}>0 \tag{20}
\end{equation*}
$$

Being $m=5[\mathrm{~kg}]$, if we take in particular $m_{d}=m=5$, we obtain as gains

$$
\begin{equation*}
k_{p}=500, \quad k_{d}=50 \sqrt{2}=70.71 \tag{21}
\end{equation*}
$$

and a measure of f_{c} will not be needed.
In regulation tasks (with $x_{d}(t)=x_{d}=$ constant), by choosing again $m_{d}=m$, the control law 18) collapses to just a PD action on the position error e,

$$
\begin{equation*}
f=k_{p}\left(x_{d}-x\right)-k_{d} \dot{x} . \tag{22}
\end{equation*}
$$

This scheme is also called compliance control, since the main design parameter left is the desired stiffness k_{p}. Also in this case, the system will converge to $x=x_{d}$ if (and only if) there is no contact force. With $f_{c} \neq 0$ but constant, the position $x_{e} \neq x_{d}$ that satisfies

$$
\begin{equation*}
k_{p}\left(x_{d}-x_{e}\right)+f_{c}=0 \quad \Rightarrow \quad x_{e}=x_{d}+\frac{f_{c}}{k_{p}} \tag{23}
\end{equation*}
$$

will be an asyptotically (exponentially) stable closed-loop equilibrium, as can be possibly checked with the Lyapunov candidate $V=\frac{1}{2} m \dot{x}^{2}+\frac{1}{2} k_{p}\left(x-x_{e}\right)^{2} \geq 0$ (using in this case LaSalle theorem for the analysis).
Force control. If we desire to regulate explicitly the contact force to a desired constant value f_{d}, it is necessary to build a force error $e_{f}=f_{d}-f_{c}$ into the control law. After using $\sqrt{155}$, define the auxiliary input a as

$$
\begin{equation*}
a=\frac{1}{m_{d}}\left(k_{f}\left(f_{d}-f_{c}\right)-k_{d} \dot{x}\right), \tag{24}
\end{equation*}
$$

with force error gain $k_{f}>0$ and velocity damping coefficient $k_{d}>0$. The associated control force is then

$$
\begin{equation*}
f=\frac{m}{m_{d}}\left(k_{f}\left(f_{d}-f_{c}\right)-k_{d} \dot{x}\right)-f_{c} . \tag{25}
\end{equation*}
$$

A contact force measure is needed in this case, even if we choose $m_{d}=m$. The closed-loop system becomes

$$
\begin{equation*}
m_{d} \ddot{x}+k_{d} \dot{x}=k_{f}\left(f_{d}-f_{c}\right) . \tag{26}
\end{equation*}
$$

During free motion, i.e., as long as $f_{c}=0$, the mass will eventually move at the constant speed $\dot{x}_{e}=k_{f} f_{d} / k_{d}$. Therefore, the gain k_{d} can be tuned so as to keep this speed low (say, during an approaching phase before contacting a hard environment).
An analysis of the general behavior of system (26) for $f_{c} \neq 0$ is impossible without assigning a model that describes the source of the contact force f_{c}. Even if we can measure it, as assumed when designing (25), we do not know the evolution of this disturbance nor can impose a desired behavior to it. Should the force error e_{f} converge to zero at steady state, it follows from eq. 26) that also the mass velocity \dot{x} would go to zero. However, the position x_{e} reached at the equilibrium would depend on the actual history of the external contact force (see an example in Appendix).
Assume then that contact forces are generated by a compliant environment with stiffness $k_{c}>0$, placed beyond the (undeformed) position $x=x_{c}>0$. Then, the model for the reaction force of the environment is

$$
f_{e}= \begin{cases}-k_{c}\left(x-x_{c}\right), & \text { for } x \geq x_{c} \tag{27}\\ 0, & \text { else }\end{cases}
$$

During contact, the force applied to the mass is $f_{c}=-f_{e}$. Thus, from 26) and 27 it follows

$$
\begin{equation*}
m_{d} \ddot{x}+k_{d} \dot{x}=k_{f}\left(f_{d}-k_{c}\left(x-x_{c}\right)\right) \quad \Rightarrow \quad m_{d} \ddot{x}+k_{d} \dot{x}+k_{f} k_{c} x=k_{f}\left(f_{d}+k_{c} x_{c}\right) . \tag{28}
\end{equation*}
$$

The steady-state position reached by the second-order asymptotically stable system 28 in response to the (positive) step input $k_{f}\left(f_{d}+k_{c} x_{c}\right)$ and the associated steady-state contact force will be

$$
\begin{equation*}
x_{e}=x_{c}+\frac{f_{d}}{k_{c}} \quad \Rightarrow \quad f_{c}=\left(-f_{e}=k_{c}\left(x_{e}-x_{c}\right)\right)=f_{d} \tag{29}
\end{equation*}
$$

A slight variant of the force control law $\sqrt{25}$ is obtained by replacing the cancelation of the actual contact force in 15 by a compensation/feedforward of the desired contact force, i.e., $f=m a-f_{d}$. Using again 24, we obtain

$$
\begin{equation*}
f=\frac{m}{m_{d}}\left(k_{f}\left(f_{d}-f_{c}\right)-k_{d} \dot{x}\right)-f_{d} \tag{30}
\end{equation*}
$$

and, as a result, the closed-loop system

$$
\begin{equation*}
m_{d} \ddot{x}+k_{d} \dot{x}=\left(k_{f}-\frac{m_{d}}{m}\right)\left(f_{d}-f_{c}\right) . \tag{31}
\end{equation*}
$$

Using the contact force model 27 leads finally to

$$
\begin{equation*}
m_{d} \ddot{x}+k_{d} \dot{x}+\left(k_{f}-\frac{m_{d}}{m}\right) k_{c} x=\left(k_{f}-\frac{m_{d}}{m}\right)\left(f_{d}+k_{c} x_{c}\right) . \tag{32}
\end{equation*}
$$

It is immediate to see that the analysis of (32) can be completed as for (28), provided that the slightly more restrictive design condition $k_{f}>m_{d} / m>0$ is satisfied. Under this hypothesis, the steady-state conditions for the asymptotically stable system (32) are the same given in 29).

Appendix (extra material to Exercise 3)

Consider a scheme for the contact force generation modeled by

$$
\begin{equation*}
\dot{f}_{c}=\alpha\left(f_{d}-f_{c}\right), \quad \text { with } \alpha>0 \tag{33}
\end{equation*}
$$

and assume, e.g., $f_{c}(0)=f_{c 0}>f_{d}$ (the initial contact force is larger than the one desired). Then

$$
\begin{equation*}
f_{c}(t)=f_{d}-\left(f_{d}-f_{c 0}\right) \exp ^{-\alpha t} \quad \text { and } \quad e_{f}(t)=f_{d}-f_{c}(t)=\left(f_{d}-f_{c 0}\right) \exp ^{-\alpha t}=e_{f 0} \exp ^{-\alpha t} \tag{34}
\end{equation*}
$$

Assuming $x(0)=\dot{x}(0)=0$ and discarding the special case $\alpha=k_{d} / m_{d}$, the solution of (26) can be found by Laplace techniques and is given by the following position trajectory

$$
\begin{equation*}
x(t)=\frac{k_{f} e_{f 0}}{k_{d} \alpha}+\frac{k_{f} e_{f 0}}{k_{d}-\alpha m_{d}}\left(\frac{m_{d}}{k_{d}} \exp ^{-\frac{k_{d}}{m_{d}} t}-\frac{1}{\alpha} \exp ^{-\alpha t}\right), \tag{35}
\end{equation*}
$$

and associated velocity

$$
\begin{equation*}
\dot{x}(t)=\frac{k_{f} e_{f 0}}{k_{d}-\alpha m_{d}}\left(\exp ^{-\alpha t}-\exp ^{-\frac{k_{d}}{m_{d}} t}\right) . \tag{36}
\end{equation*}
$$

It follows from (35) that, at steady state,

$$
\begin{equation*}
x_{e}=\lim _{t \rightarrow \infty} x(t)=\frac{k_{f} e_{f 0}}{k_{d} \alpha}, \tag{37}
\end{equation*}
$$

which shows an explicit dependence on the parameter α of the contact force model (33). Figure 4 shows two possible evolutions of the applied force error term $k_{f}\left(f_{d}-f_{c}\right)$ (in blue) and of the resulting mass position x (in green), for $\alpha=2$ and $\alpha=3$, with the other parameters being $f_{d}=3[\mathrm{~N}], f_{c 0}=2[\mathrm{~N}]$ (and thus, $\left.e_{f}=f_{d}-f_{c 0}=1[\mathrm{~N}]\right), k_{f}=1.4, m_{d}=1[\mathrm{~kg}]$, and $k_{d}=1[\mathrm{~kg} / \mathrm{s}]$.

Figure 4: Simulation results of (26) of a controlled mass m_{d} subject to the contact force f_{c} in (34), for $\alpha=2[$ left $]$ and $\alpha=3$ [right]. The plots are the position x (shown in green) and the force error term $k_{f}\left(f_{d}-f_{c}\right)=k_{f} e_{f}$ (in blue). The reached position x_{e} is the one computed in (37).

