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Exercise 1

The RP planar robot in Fig. 1} with coordinates ¢ = (q1,¢2) and parameters ms, de2, I and I
defined therein, should execute a task defined by a time-varying trajectory yq(t) € R for the height
of its end-effector.

Figure 1: A RP planar robot with the relevant parameters and variables.

Assuming as input command the joint velocity ¢ € R?, determine the explicit expressions of the
kinematic control laws that execute the task in nominal conditions, recover exponentially from any
task error, and

e minimize %||q||2 which is the theoretical pitfall of this solution?

e minimize the weighted norm %(JTW{], with constant W = diag{w, w2} > 0; what happens
for very large ratios wy/wy (in the limit — 00); and for wy/wy — c0?

e minimize the kinetic energy T = %qTM (q)q, being M (q) > 0 the robot inertia matrix.

Exercise 2

Figure 2: The Boulton-Watt governor and a scheme with definition of parameters and variables.

Figure [2|shows a picture and a simplified scheme of the famous Boulton-Watt centrifugal governor,
a system invented to regulate the rotational speed of a steam engine by a mechanical leverage
(feedback) opening a valve that provides steam under pressure to the engine. We consider here
only the so-called open-loop dynamic behavior of the system, under the action of an external torque
7 € R applied to the main rotating shaft.



Assume that:
e the main shaft has an inertia I, around its rotation axis
e the two balls have identical mass m that is concentrated at the end of a link of length L
e the links and all other linkages have negligible masses

e a viscous friction torque with coefficient f, > 0 is acting on the main shaft

all other frictional effects are negligible.

Derive the complete dynamic model of this system using a Lagrangian formalism. Assuming
knowledge of the geometric parameter L, provide a linear parametrization of the dynamics in
terms of its dynamic coefficients. Find the value of the constant torque 7 to be applied for
sustaining a steady-state rotation at a given angular speed 2 > 0. Finally, design a nonlinear
feedback for 7 so as to achieve partial feedback linearization of the system, i.e., exact linearization
by feedback of only part of the closed-loop dynamics, in this case of one of the two coordinates.

Exercise 3
Consider the design of impedance control laws and force control laws for the 1-dof example, shown

in Fig.|3] namely a single mass m that moves on a frictionless horizontal plane under the action of
a commanded force f € R and of a contact force f. € R.
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Figure 3: A mass m subject to a commanded force f and a contact force f..

In particular:

e The impedance controllers should work with a generic time-varying, smooth position reference
x4(t), either with or without the use of a load cell that can measure the contact force f..
Tllustrate the properties of the obtained closed-loop systems.

e What happens when x4(t) degenerates to a constant? What happens during free motion,
when f. =07

e For m = 5 [kg], design the control parameters of the impedance law so that the dynamics
of the position error e = z4 — x in the closed-loop system is characterized by a pair of
asymptotically stable complex poles with natural frequency w, = 10 [rad/s| and critical
damping ratio ¢ = 0.7071.

e On the other hand, the force controllers should be able to regulate the (measured) contact
force f. to a constant value fy, using any combination of desired force feedforward and force
error feedback. Illustrate the properties of the obtained closed-loop systems.

e What happens during free motion, when f. = 0 and a constant contact force f; is desired?

[150 minutes; open books]
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Exercise 1

The problem deals with kinematic redundancy since the RP robot has n = 2 joints and the required
task is scalar m = 1. The task output function and its Jacobian are

Iia) = 22

The 1 x 2 task Jacobian loses rank (vanishes) iff ¢ = {0, 7} and ¢» = 0 simultaneously.

y(q) = q2sinqy, ( gaco8q, sing ) . (1)

The minimization of the squared norm of ¢ is achieved by the use of the pseudoinverse of the
task Jacobian. Out of singularities, J# = JT(JJT)=" and the kinematic control law takes the
expression

G = T%(a) (G + ks~ v(@) = 5y ( e ) (9 + k(ya — a2sinar)) (2)
s+ q3¢q S1

where k > 0 is a control gain that guarantees exponential recovery from transient errors, i.e.,
é(t) = —ke(t), with e = yg — gasing; # 0, during task execution. The pitfall of is that
the norm ||q|| involves mixed angular (the revolute joint velocity ¢1) and linear (the prismatic
joint velocity ¢o) quantities, so its straight minimization is ill-defined conceptually. In fact, the
denominator in (2)) contains the sum of an non-dimensional term (s?) and of a term with (squared)
length units. Stated differently, changing the representing units (e.g., from 1 m to 100 cm) will
change the ‘optimal’ solution.

The minimization of the weighted norm %quq, leading to weighted pseudoinversion of the task
Jacobian, may solve this theoretical issue. In particular, the units of the (positive) elements in
the diagonal of W can be used to make terms non-dimensional (e.g., by choosing w; in (squared)
length units). Out of singularities, J éﬁv =W lJT(Jw1J7)~1 and the kinematic control law
takes the expression

q2C1
. # . 1 wy . .
q=Jw(@)@Ga+kya—y(@) = 553 | 4 |Witklya—asing)), (3)
4acr | St 21
w1 w2 w2

with k > 0 as before. Indeed, different values of the weights w; and wsy will lead to different joint
velocity solutions. It is easy to verify that is the relative ratio between w; and wy that really
matters. For very large ratios wy/ws, the cost of moving the (revolute) joint 1 will be dominant
and therefore the solution will tend to minimize its motion while performing the task. In the
limit, when wy — 00, it follows from that ¢; — 0, while ga < 1/s1: therefore, executing the task
will become more and more problematic as the second link gets closer to the horizontal. Similarly,
for we /w1 — oo the second (prismatic) joint will be very expensive to move, while ¢; o 1/g2c;:
the control effort will increase dramatically when the second link is close to being vertical (¢; ~ 0)
and/or fully retracted (g2 ~ 0).

For the third objective, we need first to derive the inertia matrix of the RP robot. From the
expression of the kinetic energy T = T7 + T3, with
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we obtain a diagonal inertia matrix as

I + Iy + ma(qe —de2)®* 0 ): <m11(QQ) 0 >

Mia) = ( : - v (@)

The minimization of the kinetic energy 7' is then a special case of a weighted pseudoinversion of
the task Jacobian, with one weight being configuration dependent. Thus, out of singularities, the
inertia-weighted kinematic control law takes the expression

q2C1
. . 1 mi1(q2) . .
q=J%(q) Wa+kya—y(q)) = W s (Ya + k(ya — gesingy)) . (5)
20 51 51
mai(qe) Moz ma2

Note that the two addends in the first denominator have both consistent units of [kg~'].

Exercise 2

Let g = (0, ¢). Following a Lagrangian approach, under the given assumptions, we compute the
kinetic energy T = T + 2T, for the main shaft and the two equal balls. We have

1. 1 . .
T,=3L6%  Tp=gmL? (¢2 462 sin2¢) :
and thus the diagonal inertia matrix

I, + 2mL?sin’¢ 0
) ©)

M(q) = ( 0 omL?

Using the Christoffel symbols, the Coriolis and centrifugal terms are easily computed from @ as

[ 4mL?sin¢cos¢ 06 . 20 ¢
“2.9) = ( —2mL?sin ¢ cos ¢ 6> ) = mi7sin(29) ( —6? ) @

For the potential energy due to gravity, U = U + 2U,,, we have (up to a constant)

Us = 07 Un = —mgoLCOS ¢7

g(q) = <8gflq)>T = (2mgogsin¢ ) : (8)

Including also viscous friction on the main shaft, the dynamic equations are

and thus

(I +2mL?sin®¢) 6 + 4mL?singcosp 0 b+ f,0 = T

. . 9
2mL? ¢ — 2mL%sin pcos ¢ 62 + 2mgoLsing = 0 ©)

Assuming knowledge of the geometric parameter L, equation @ can be expressed in the linearly
parametrized form

i 2L%sine 0+ 20%sm(20)66 6 [ Y ( ; ) o)
. . m = »q, ™= ;
0 2126~ [*sin(20) 0 + 20Lsing 0 ) | 94 0



with the vector 7 € R? of dynamic coefficients.
In a steady-state equilibrium_with constant angular velocity 6 =Q > 0, we have = 0 and
$ = ¢ = 0. This yields from (9)

TQ = fuf2, Lsinpcosp Q%+ gosing =0 = COS e = ngop. (11)

The input torque 7 has to compensate just for the energy loss due to friction, in order to keep a
uniform motion via constant angular velocity. Moreover, the equilibrium angle ¢, results from the
balance of the gravity force and the centrifugal force. Its value increases (in the range (0,7/2))
together with €.

Finally, by applying the nonlinear feedback law
T= (Is + 2mL> Sin2¢)) a+4mL?singcosd 0 ¢+ f,0 (12)
where a € R is the new control input (an acceleration), system @D is transformed into

0 =a
“ . 13
¢—Sin¢cos¢02+%sin¢ = 0. (13)

The dynamics of 6 is now exactly linear (a double integrator), while partial control of the motion of
¢ can be achieved only through the centrifugal term in the second equation, being 62 = ( / adt)z.

Exercise 3

The dynamic equation of the system in Fig. [3|is

mi = f+ f.. (14)

Impedance control. The so-called inverse dynamics control law becomes in this simple case
f=ma— f., (15)
and transforms system into the double integrator
i =a. (16)

The auxiliary input a has to be designed so that the controlled mass m, under the action of the
contact force f., matches the behavior of an impedance model characterized by a desired (apparent)
mass mq > 0, desired damping kq > 0, and desired stiffness k, > 0, all acting with respect to a
smooth motion reference x4(t), or

my (i‘*fi‘d)Jrkd (:i‘fi‘d) +kp (xf:cd) = fe. (17)

Equating & in and in the reference behavior , solving for a and substituting in yields
the control force

f:m(jéd+kd(ﬂbd—ab)+kp(xd—x))+(m—1) fe. (18)

mq mq

The feedback law requires in general a measure of the contact force f..



In the reference model , the position error e = x4 — x does not converge to zero if there is
a contact force f.. Otherwise, e will asymptotically go to zero —indeed exponentially, in view of
the linearity of the system dynamics. In particular, for k3 < 4k,mg, the obtained second-order
linear system is characterized by a pair of asymptotically stable complex poles with natural
frequency and damping ratio given by

Wy =4/ —, (= ———. (19)

Reducing the desired mass my, for given values of stiffness and damping, will increase both the
natural frequency w,, and the damping ratio ¢, and thus improve transients. On the other hand,
for a given mass mg, an increase of the stiffness k, should be accompanied by an increase of
the damping kg in order to prevent more oscillatory transients. If the desired mass equals the
natural (original) mass, i.e., mqy = m, a measure of the contact force f. is no longer needed in the
impedance controller .

Wishing to achieve w,, = 10 and ¢ = 0.7071 = 1//2, equations provide
ky, =100mg4,  ka=10v2mg,  for any mg > 0. (20)
Being m = 5 [kg], if we take in particular my = m = 5, we obtain as gains
k, = 500, kq = 50v/2 = 70.71, (21)

and a measure of f. will not be needed.

In regulation tasks (with x4(t) = 24 = constant), by choosing again mg = m, the control law
collapses to just a PD action on the position error e,

f = k‘p (:Ed — (E) — kdi'. (22>

This scheme is also called compliance control, since the main design parameter left is the desired
stiffness kp,. Also in this case, the system will converge to = x4 if (and only if) there is no contact
force. With f. # 0 but constant, the position z. # x4 that satisfies

kp(xg—ze) + fe=0 = xe:xd—&—% (23)
P
will be an asyptotically (exponentially) stable closed-loop equilibrium, as can be possibly checked
with the Lyapunov candidate V = 2mi? + 1k,(z — 2.)? > 0 (using in this case LaSalle theorem
for the analysis).

Force control. If we desire to regulate explicitly the contact force to a desired constant value fy,
it is necessary to build a force error ey = fq — f. into the control law. After using , define the
auxiliary input a as

(kg (fa— fc) — kat), (24)

with force error gain k; > 0 and velocity damping coefficient k4 > 0. The associated control force
is then

1
a=—
mq

F="2(hp (fa— fo) — kait) — fo. (25)

mq
A contact force measure is needed in this case, even if we choose mgy = m. The closed-loop system
becomes

mai + kgt = ky(fa — fc)- (26)



During free motion, i.e., as long as f. = 0, the mass will eventually move at the constant speed
i = kffa/ka. Therefore, the gain k4 can be tuned so as to keep this speed low (say, during an
approaching phase before contacting a hard environment).

An analysis of the general behavior of system for f. # 0 is impossible without assigning a
model that describes the source of the contact force f.. Even if we can measure it, as assumed
when designing , we do not know the evolution of this disturbance nor can impose a desired
behavior to it. Should the force error ey converge to zero at steady state, it follows from eq.
that also the mass velocity & would go to zero. However, the position z. reached at the equilibrium
would depend on the actual history of the external contact force (see an example in Appendix).

Assume then that contact forces are generated by a compliant environment with stiffness k. > 0,
placed beyond the (undeformed) position © = x. > 0. Then, the model for the reaction force of

the environment is
—ke(x — x,), for v > w.,
fe = (27)

0, else.

During contact, the force applied to the mass is f. = —f.. Thus, from and it follows
mad + kgt = kjf (fd - k‘c(x — xc)) = mal + kgt + kjfkc.%‘ = k‘f (fd + kcxc) . (28)

The steady-state position reached by the second-order asymptotically stable system in response
to the (positive) step input k¢ (fq + kcx.) and the associated steady-state contact force will be

Te = T+ % = fc = (*fe = kc(Ie - Ic)) = fd- (29)

A slight variant of the force control law is obtained by replacing the cancelation of the actual
contact force in by a compensation/feedforward of the desired contact force, i.e., f = ma— fq4.
Using again , we obtain
m .
f=—"(ks(fa— fc) — kai) — fa, (30)
mg

and, as a result, the closed-loop system

ik — (e — Y (5,
maZ + kgt = (kf - ) (fd fc) (31)
Using the contact force model leads finally to
. . mq mq
mad + kqx + (kf — H) kex = (kf — H) (fa+ kexe). (32)

It is immediate to see that the analysis of can be completed as for , provided that the
slightly more restrictive design condition kf > mgq/m > 0 is satisfied. Under this hypothesis, the
steady-state conditions for the asymptotically stable system are the same given in .

* %k ok ok ok



Appendix (extra material to Exercise 3)

Consider a scheme for the contact force generation modeled by

fe=a(fa— fo)s with a > 0, (33)
and assume, e.g., f.(0) = fco > fq (the initial contact force is larger than the one desired). Then
fet) = fa— (fa— feo)exp™®" and ep(t) = fa — fo(t) = (fa — feo) exp™®" = epoexp™®'. (34)

Assuming x(0) = #(0) = 0 and discarding the special case o = kq/myg, the solution of can be
found by Laplace techniques and is given by the following position trajectory

k k _ka 1
JJ(t) _ Rf€fo + FEFO <7nd exp it - eXp—at) ’ (35)

kda kd — My kd

and associated velocity

k/: _k
U G ] (36)
It follows from (35 that, at steady state,
2o = lim a(t) = "1 (37)
t—o0 kd o ’

which shows an explicit dependence on the parameter « of the contact force model . Figure
shows two possible evolutions of the applied force error term kf(fq — fc) (in blue) and of the
resulting mass position z (in green), for « = 2 and a = 3, with the other parameters being
fa=3[N], foo =2 [N] (and thus, ef = fg— feoo =1 [N]), ky = 1.4, mg = 1 [kg], and kg = 1 [kg/s].

response foralfa=2,1c0=2,fd=3,ki=1.4,md=1,kd=1 ==> xe=07

response foralfa=3,100 =2, fd =3, ki =1.4,md=1,kd=1 ==> xe =0.46667
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Figure 4: Simulation results of of a controlled mass my subject to the contact force f. in ,
for aw = 2 [left] and o = 3 [right]. The plots are the position z (shown in green) and the force error
term kf(fq — fc) = kyey (in blue). The reached position z. is the one computed in .
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