
Robotics II
September 21, 2017

Exercise 1

Consider the RP planar robot in Fig. 1, with the coordinates q = (q1, q2), the kinematic parameter
L2, and the dynamic parameters dc2, m2, I1 and I2 defined therein.
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Figure 1: A RP planar robot with the relevant variables and parameters.

• Provide the symbolic expression of the inertia matrix M(q), of the Coriolis and centrifugal
vector c(q, q̇), and of the gravity vector g(q) when the plane (x0,y0) is inclined with respect
to the horizontal plane by an angle α ∈ [0, π/2] around the x0 axis.

• Determine the symbolic expression of q̈0 ∈ R2, the joint acceleration when the robot starts
from rest and the two actuators apply a torque τ and a force F as command inputs.

• Next, assume that

i) α = 0 and the robot is at rest;
ii) the second link is a uniform thin rod with mass m2 and inertia I2 = (m2L

2
2)/12;

iii) the torque and the force provided by the motors are bounded: |τ | ≤ Tmax, |F | ≤ Fmax;
iv) the prismatic joint has a limited symmetric range, with q2 ∈ [−L2, L2].

In these conditions:

a. Provide the expression of the squared norm ‖p̈0‖
2, where p̈0 ∈ R2 is the end-effector

acceleration when the robot starts from rest. Verify that this quantity is a function of
q and sketch graphically this dependence.

b. Analyze at least qualitatively how the configurations q∗min and q∗max that provide, re-
spectively, the minimum and maximum of ‖p̈0‖

2 change, when the inertia I1 of the first
link is either much larger or much smaller than I2 (by 1-2 orders of magnitude).
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Exercise 2

A lightweight 6R robot with a spherical wrist operates in a working environment where a human
is occasionally present. During normal operation, the robot task is to track accurately a desired
smooth trajectory pd(t) for the end-effector position p = fp(q) ∈ R3 and an associated desired
trajectory φd(t) for a minimal representation of the end-effector orientation φ = fφ(q) ∈ R3.
Assume that:

• The complete dynamic model of the robot in free motion is perfectly known, and is described
(with the usual notations) by the following equations

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ − τ f (q̇), (1)

where the friction term τ f denotes a dissipative action at the joints.
• The direct kinematic functions fp and fφ are known, as well as the 6× 6 analytic Jacobian

associated to the end-effector task

J(q) =

 ∂fp(q)

∂q

∂fφ(q)

∂q

 =

(
Jp(q)

Jφ(q)

)
, (2)

where the two matrices Jp and Jφ have dimension 3× 6, and matrix J is nonsingular in the
region of interest.

• The robot is equipped only with encoders at the joints, and the environment is not monitored
by any external sensor.
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Figure 2: A state diagram of robot control operation in collision-aware tasks.

With reference to the state diagram in Fig. 2, the following collision-aware behavior for safe Human-
Robot Interaction (HRI) should be realized through a suitable set of robot control laws and con-
ditions for the transitions:

• During normal operation (state A in the diagram), if a mild contact occurs and is detected,
the robot keeps the three-dimensional position task but relaxes the orientation task, trying
to accommodate in this way a reflex reaction to the contact (state B).

• Instead, when a severe collision occurs during normal operation, the robot abandons the task
completely by bouncing away from the collision area (state C) ad then stops.

• While in state B, the robot may either switch back to normal operation when the contact
is no longer present, or abandon also the orientation task and switch to state C in case the
interaction forces will increase further.

Specify the control laws and the transition conditions to be used in the state diagram of Fig. 2.

[150 minutes; open books]
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Solution
September 21, 2017

Exercise 1

Following a Lagrangian approach, we compute first the kinetic energy T = T1 + T2. We have

T1 =
1
2
I1 q̇

2
1 , T2 =

1
2
m2

∥∥∥∥ d

dt

(
q2 cos q1
q2 sin q1

)∥∥∥∥2

+
1
2
I2 q̇

2
1 =

1
2
(
I2 +m2q

2
2

)
q̇21 +

1
2
m2 q̇

2
2 ,

and thus the diagonal inertia matrix

M(q) =
(
I1 + I2 +m2q

2
2 0

0 m2

)
. (3)

Using the Christoffel symbols, the Coriolis and centrifugal terms are easily computed from (3) as

c(q, q̇) =
(

2m2q2 q̇1q̇2

−m2q2 q̇
2
1

)
.

For the potential energy due to gravity, Ug = U1 + U2, we have (up to a constant)

U1 = 0, U2 = m2 (g0 sinα) q2 sin q1,

and thus

g(q) =
(
∂Ug(q)
∂q

)T
= m2 g0 sinα

(
q2 cos q1

sin q1

)
. (4)

When the robot is at rest (q̇ = 0), the joint acceleration takes the expression

q̈0 = q̈ |
q̇=0

= M−1(q)
((

τ

F

)
− g(q)

)
=


τ −m2g0 sinα q2 cos q1

I1 + I2 +m2q22

F −m2g0 sinα sin q1
m2

 =

(
q̈1

q̈2

)
. (5)

The end-effector position and its velocity are

p = (q2 + dc2)
(

cos q1
sin q1

)
, ṗ = q̇2

(
cos q1
sin q1

)
+ (q2 + dc2) q̇1

(
− sin q1
cos q1

)
.

Thus, the end-effector acceleration at zero joint velocity is

p̈0 = p̈ |
q̇=0

= q̈2

(
cos q1
sin q1

)
+ (q2 + dc2) q̈1

(
− sin q1
cos q1

)

=
(

cos q1 − sin q1
sin q1 cos q1

)(
q̈2

(q2 + dc2) q̈1

)
= R(q1)

(
q̈2

(q2 + dc2) q̈1

)
,

(6)

where R(·) is a 2× 2 (planar) rotation matrix. From (6), we have

‖p̈0‖
2 = p̈T0 p̈0 =

∥∥∥∥ q̈2

(q2 + dc2) q̈1

∥∥∥∥2

= (q2 + dc2)2 q̈21 + q̈22 . (7)
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Using (5) for α = 0 in (7), we obtain

‖p̈0‖
2 =

1
m2

2

F 2 +
(q2 + dc2)2

(I1 + I2 +m2q22)2
τ2, (8)

which shows an actual dependence only on the prismatic joint variable q2. The two addends in (8)
are separately driven by the two motors: the first one is a radial contribution due to F , which is
scaled just by m2

2 and is independent from the robot configuration; the second one is the tangential
contribution (normal to the second link) due to τ , which depends in a nonlinear fashion on q2, as
well as on m2, dc2, I1, and I2 (and their relative values).

It is easy to see that the minimum of ‖p̈0‖
2 is obtained at q∗2,min = −dc2 (with arbitrary q∗1),

namely when the end-effector position is at the origin (on the axis of joint 1). Note also that this
value is independent from the dynamic parameters m2, I1, and I2.

From the expression (8), it follows that the maximum value H of the squared norm of the accel-
eration is given by

H =
F 2
max

m2
2

+ max
q2∈[−L2,L2]

(q2 + dc2)2

(I1 + I2 +m2q22)2
τ2
max,

where the maximum bounds on the inputs have been used. Under the given assumption on the
mass distribution of link 2, in order to find the absolute maximum of the tangential contribution
in ‖p̈0‖

2 one should study the behavior of the positive function

h(q2) =
(

q2 + dc2
I1 + I2 +m2q22

)2

=

 q2 + L2
2

I1 +m2

(
L2

2
12 + q22

)
2

for q2 in the closed interval [−L2, L2]. The stationary points of h satisfy the necessary condition

dh(q2)
dq2

= 0 ⇐⇒ 2

 q2 + L2
2

I1 +m2

(
L2

2
12 + q22

)
 I1 +m2

(
L2

2
12 + q22

)
− 2m2q2

(
q2 + L2

2

)
(
I1 +m2

(
L2

2
12 + q22

))2 = 0

⇐⇒

(
q2 + L2

2

) (
m2 q

2
2 +m2L2 q2 −

(
I1 +m2

L2
2

12

))
(
I1 +m2

(
L2

2
12 + q22

))3 = 0.

The zeros of the derivative occur where one of the two polynomial factors (one linear, the other
quadratic) at the numerator vanishes. This occurs at1

q2 = q∗2,min = −L2

2
⇒ a minimum of h(q2)

and at

q2 = q∗2,max = −L2

2
+

√(
L2

2

)2

+
I1
m2

+
L2

2

12
⇒ a maximum —only if ∈ [−L2, L2].

For very large values of the ratio I1/I2 ∝ I1/m2, this second expression will be larger than L2,
and thus outside the closed interval of definition for q2. Therefore, the maximum will occur at the

1The second root of the quadratic factor is always strictly lower than −L2, thus outside the interval [−L2, L2].
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upper limit, i.e., q∗2,max = L2. On the other hand, for very small values of I1/m2, neglecting this
term and using a Taylor expansion yields q∗2,max ≈ L2/12.

As a numerical example, Fig. 3 shows the plots of h(q2) for various ratios of I1/I2, when the
second link is a uniform thin rod of mass m2 = 1 [kg] and length L2 = 0.5 [m]. For instance, when
I1/I2 = 50 (red profile on the left), the maximum is at q∗2,max = L2 = 0.5. On the other hand,
when I1/I2 = 0.01 (red profile on the right), the maximum is at q∗2,max ≈ L2/12 = 0.04 [m].
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Figure 3: Behavior of the h(q2) function, for various ratios I1/I2: high ratios 50, 20, 10 (left) and
low ratios = 1, 0.1, 0.01 (right).

The physical explanation of these behaviors is as follows. When the inertia of the first link is
very large, this constant inertia will dominate the effort needed by the first motor to accelerate
the robot structure and so the maximum tangential component of the end-effector acceleration
will be obtained when the second link is fully stretched. On the other hand, when the first link
inertia can be assumed as negligible in the picture, the maximum tangential acceleration of the
end-effector will result from the trade-off between two contrasting effects: the amplification of the
joint acceleration due to a longer radial extension of the second link and its reduction due to the
associated larger inertia seen by the first motor torque. Thus, qualitatively speaking, the peak will
be somewhere in between q2 = 0 and q2 = L2.

Note finally that when the location of the center of mass of the second link (with non-uniformly
distributed mass) approaches the tip of the link (dc2 = 0), the above qualitative behavior remains
the same, but the plots in Fig. 3 will become symmetric w.r.t. q2 = 0, with the single minimum at
q∗2,min = 0 and two maxima in ±|q∗2,max| ∈ [−L2, L2].

Exercise 2

The problem can be solved by using the residual vector r as a collision monitoring signal, together
with a number of ordered positive thresholds on its norm ‖r‖ to be used in the switching conditions,
and suitable control laws for each state.

Based on the known model (1), the residual r ∈ R6 can be defined as

r(t) = K

(
M(q)q̇ −

∫ t

0

(
τ +CT(q, q̇)q̇ − g(q)− τ f (q̇) + r

)
ds

)
, with K > 0 (diagonal),

(9)
where τ is the actual control torque applied in any of the robot states A, B, or C. Using (1),
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equation (9) implies the dynamic behavior

ṙ = K (τ c − r) , (10)

where τ c ∈ R6 is the joint torque resulting from a collision force/moment occurring anywhere along
the robot structure. Indeed, if at some time t the torque τc returns to zero, then each component
of r will decay exponentially to zero as well. Moreover, for a sufficiently large K, from (10) we
can use the approximation τC ' r and use the residual vector r as a proxy of the unknown joint
torque τ c due to collision.

With reference to Fig. 2, in the following suitable control laws will be defined for each state.

• Control in state A. Define the desired task trajectory as xd(t) =
(
pTd (t) φTd (t)

)T
∈ R6. In

order to accurately follow this smooth trajectory, we use the Cartesian feedback linearization
controller

τ = M(q)J−1(q)
(
ẍd +KD (ẋd−J(q)q̇) +KP (xd−f(q))−J̇(q)q̇

)
+C(q, q̇)q̇ + g(q) + τ f (q̇),

(11)

with 6 × 6 (typically diagonal) gain matrices KP > 0 and KD > 0. Within this law, the
presence of a PD action on the task error allows to recover exponentially transient errors.
This is necessary, e.g., when the complete task is partially abandoned and then resumed (in
case we are coming back to state A from state B).

• Control in state B. In this case, the orientation part of the desired task will be relaxed,
while the position task pd(t) ∈ R3 for the robot end-effector should be kept. Therefore,
the robot becomes kinematically redundant since the task has dimension m = 3 while the
robot has n = 6 control commands available; the degree of redundancy is thus n −m = 3.
We continue to achieve Cartesian position tracking, e.g., by using a dynamically consistent
redundancy resolution scheme. This control scheme uses the 3× 6 Jacobian Jp in a partially
feedback linearizing law that is weighted by the inverse of the task inertia matrix Λ(q) and
adds a suitable torque τ 0 ∈ R6 projected in the dynamic null space of the task. We have
thus

τ = JTp (q)Λ(q)
(
p̈d +KD,p (ṗd−Jp(q)q̇) +KP,p

(
pd−fp(q)

)
−J̇p(q)q̇

+Jp(q)M−1(q) (C(q, q̇)q̇ + g(q) + τ f (q̇))
)
,

+
(
I − JT (q)Λ(q)J(q)M−1(q)

)
τ 0,

(12)

with 3× 3 (typically diagonal) gain matrices KP,p > 0 and KD,p > 0, and the 3× 3 inertia
matrix reduced to the task

Λ(q) =
(
Jp(q)M−1(q)JTp (q)

)−1

.

In (12), the torque τ 0 = Krr is used, with Kr > 0, so as to obtain a reaction to the collision
torque τ c ' r which is consistent with the remaining Cartesian position task.

• Control in state C. In this case, the complete original task is abandoned. The robot reacts
to the collision in a stronger or weaker way depending on the intensity (and direction in the
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joint space) of r, which is a proxy of the severity of the collision. Moreover, to avoid bias in
the reaction due to the gravity, this term should be cancelled. As a result

τ = g(q) +Krr (13)

with Kr > 0. Once the contact is lost, r will go to zero. As a result, thanks of the presence
of friction, the robot will come to a stop in a zero-gravity condition. Joint velocity damping
can be added so as to anticipate the instant when the robot is finally at rest, but this will
limit quick reaction to collisions.

Transitions between the states in Fig. 2 will be driven by the actual value of ‖r‖ ≥ 0. To this end,
define a sequence of positive thresholds for this variable:

0 < rlow < rmild < rsevere.

The value rlow is the minimum threshold that should be crossed by ‖r‖ in order to detect reliably
contact/collision events (i.e., obtaining few false positives, or eliminating them). The detection
instant tdetect ≥ 0 is the first instant at which ‖r(tdetect)‖ ≥ rlow. For the choice of this lowest
threshold, one takes into account the presence of noise in position sensing and in the generation
of an estimate of the velocity q̇ by numerical differentiation of the position measures q, as well
as the remaining model uncertainties. For the two other thresholds, the rationale is that mild
collisions will generate small values of the norm of the residual and, conversely, severe collisions
will be associated to large values of r. The value rmild is chosen only slightly above rlow, so that
the control system may detect a contact but not yet consider it as a collision, letting thus the robot
continue the original motion task. With this in mind, the following switching conditions correctly
realize the desired behavior:

• condition A⇒ B: rmild ≤ ‖r‖ < rsevere;

• condition A⇒ C: ‖r‖ ≥ rsevere;

• condition B ⇒ C: ‖r‖ ≥ rsevere;

• condition B ⇒ A: ‖r‖ < rlow.

Note that the last condition may be replaced also by ‖r‖ < rmild. However, using the more
conservative value rlow introduces some hysteresis, so that the robot will avoid switching several
times between the states A and B when the norm of the residual is oscillating around rmild.

∗ ∗ ∗ ∗ ∗

7


