Robotics II

June 6, 2017

Exercise 1

Consider a planar 3R robot with unitary link lengths as in Fig. 1. where the generalized coordinates \boldsymbol{q} are defined as the absolute angles of the links w.r.t. the \boldsymbol{x}-axis. The position of the robot end-effector $\boldsymbol{p}=\boldsymbol{p}(\boldsymbol{q})$, as obtained through the direct kinematics, should follow the desired trajectory

$$
\begin{equation*}
\boldsymbol{p}_{d}(t)=\binom{1+2 \sin 3 t}{2+\cos \left(3 t+\frac{\pi}{2}\right)}, \quad \text { for } t \geq 0 \tag{1}
\end{equation*}
$$

The robot is kinematically redundant for this task.

- Define a differential inversion scheme at the level of joint jerk commands $\dddot{\boldsymbol{q}}$ such that the squared norm $\|\dddot{\boldsymbol{q}}\|^{2}$ is locally minimized and the trajectory can be executed exactly right from the initial time $t=0$.
- Provide numerical values for the initial joint position $\boldsymbol{q}(0)$, joint velocity $\dot{\boldsymbol{q}}(0)$, and joint acceleration $\ddot{\boldsymbol{q}}(0)$ such that there is a perfect initial matching with the desired trajectory. Provide also the numerical value of the initial locally optimal command $\dddot{\boldsymbol{q}}(0)$.
- Suppose that there is no perfect matching between the initial kinematic conditions of the robot and the trajectory at time $t=0$. How can we modify the command law for $\dddot{\boldsymbol{q}}$ such that the error $\boldsymbol{e}(t)=\boldsymbol{p}_{d}(t)-\boldsymbol{p}(t)$ and all its time derivatives will exponentially converge to zero?

Figure 1: A planar 3R robot with absolute angles as generalized coordinates $\boldsymbol{q}=\left(q_{1}, q_{2}, q_{3}\right)$.

Exercise 2

For the same robot in Fig. 1, and using the same coordinates defined therein, assume that the three links have equal, uniformly distributed mass $m_{i}=m=10 \mathrm{~kg}$, for $i=1,2,3$. Each torque τ_{i} delivered by the motors and performing work on the absolute coordinate q_{i} is bounded as $\left|\tau_{i}\right| \leq T_{\max }=300 \mathrm{Nm}$, for $i=1,2,3$. Consider the Cartesian regulation control law

$$
\begin{equation*}
\boldsymbol{\tau}=\boldsymbol{J}^{T}(\boldsymbol{q}) \boldsymbol{K}_{P}\left(\boldsymbol{p}_{d}-\boldsymbol{p}(\boldsymbol{q})\right)-\boldsymbol{K}_{D} \dot{\boldsymbol{q}}+\boldsymbol{g}(\boldsymbol{q}), \quad \text { with } \boldsymbol{p}_{d}=\binom{1}{2}, \tag{2}
\end{equation*}
$$

where the gain matrices \boldsymbol{K}_{P} and \boldsymbol{K}_{D} are diagonal and positive definite. Let the robot starts at rest at $t=0$ in the configuration $\boldsymbol{q}(0)=\left(\begin{array}{lll}\pi / 2 & 0 & 0\end{array}\right)^{T}$.

- If the gain matrices are of the form $\boldsymbol{K}_{P}=k_{P} \cdot \boldsymbol{I}_{2 \times 2}$ and $\boldsymbol{K}_{D}=k_{D} \cdot \boldsymbol{I}_{2 \times 2}$, provide the largest values for the scalars k_{P} and k_{D} such that $\boldsymbol{\tau}(0)$ in (2) does not violate its bounds.
- Let now the positional gain matrix be $\boldsymbol{K}_{P}=\operatorname{diag}\left\{k_{P x}, k_{P y}\right\}$, while \boldsymbol{K}_{D} is as before. Provide the largest values for the scalars $k_{P x}, k_{P y}$, and k_{d} such that $\boldsymbol{\tau}(0)$ in (2) does not violate its bounds.
- How would things change if the bounds were set as $\left|\tau_{\theta, i}\right| \leq T_{\max }=300 \mathrm{Nm}$, where $\tau_{\theta, i}$ is the torque delivered by the motors and performing work on the relative (Denavit-Hartenberg) coordinate θ_{i}, for $i=1,2,3$?

Exercise 3

Consider the planar PRP robot in Fig. 2.

Figure 2: A planar PRP robot moving in a vertical plane, with definition of the generalized coordinates $\boldsymbol{q}=\left(q_{1}, q_{2}, q_{3}\right)$ to be used.

- Determine the expressions of the inertial, Coriolis and centrifugal, and gravity terms in the dynamic model expressed in the usual Lagrangian form

$$
M(\boldsymbol{q}) \ddot{\boldsymbol{q}}+c(\boldsymbol{q}, \dot{\boldsymbol{q}})+\boldsymbol{g}(\boldsymbol{q})=\tau
$$

- Find a factorization $\boldsymbol{c}(\boldsymbol{q}, \dot{\boldsymbol{q}})=\boldsymbol{C}(\boldsymbol{q} \cdot \dot{\boldsymbol{q}}) \dot{\boldsymbol{q}}$ such that $\dot{\boldsymbol{M}}-2 \boldsymbol{C}$ is a skew-symmetric matrix.
- Find all equilibrium configurations \boldsymbol{q}_{e} (i.e., such that $\boldsymbol{g}\left(\boldsymbol{q}_{e}\right)=\mathbf{0}$), if any.
- Provide symbolic expressions for the scalar coefficients $\alpha>0$ and $\beta>0$ such that the following global linear bound holds for the Hessian of the gravitational potential energy $U_{g}(\boldsymbol{q})$:

$$
\left\|\frac{\partial^{2} U_{g}(\boldsymbol{q})}{\partial \boldsymbol{q}^{2}}\right\|=\left\|\frac{\partial \boldsymbol{g}(\boldsymbol{q})}{\partial \boldsymbol{q}}\right\| \leq \alpha+\beta\left|q_{3}\right|, \quad \forall \boldsymbol{q} \in \mathbb{R}^{3} .
$$

[240 minutes; open books but no computer or smartphone]

Solution

June 6, 2017

Exercise 1

The direct kinematics of the planar 3 R robot with unitary link lengths using absolute coordinates (i.e., the link angles w.r.t. the \boldsymbol{x}-axis) is

$$
\boldsymbol{p}=\boldsymbol{p}(\boldsymbol{q})=\binom{c_{1}+c_{2}+c_{3}}{s_{1}+s_{2}+s_{3}} .
$$

The associated first-order differential kinematics, with the Jacobian matrix, is

$$
\dot{\boldsymbol{p}}=\frac{\partial \boldsymbol{p}(\boldsymbol{q})}{\partial \boldsymbol{q}} \dot{\boldsymbol{q}}=\boldsymbol{J}(\boldsymbol{q}) \dot{\boldsymbol{q}}=\left(\begin{array}{ccc}
-s_{1} & -s_{2} & -s_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right) \dot{\boldsymbol{q}} .
$$

The second-order differential kinematics, with the first time-derivative \boldsymbol{J} of the Jacobian, is

$$
\ddot{\boldsymbol{p}}=\boldsymbol{J}(\boldsymbol{q}) \ddot{\boldsymbol{q}}+\dot{\boldsymbol{J}}(\boldsymbol{q}) \dot{\boldsymbol{q}}=\boldsymbol{J}(\boldsymbol{q}) \ddot{\boldsymbol{q}}+\left(\begin{array}{lll}
-c_{1} \dot{q}_{1} & -c_{2} \dot{q}_{2} & -c_{3} \dot{q}_{3} \\
-s_{1} \dot{q}_{1} & -s_{2} \dot{q}_{2} & -s_{3} \dot{q}_{3}
\end{array}\right) \dot{\boldsymbol{q}} .
$$

The third-order differential kinematics, including the second time-derivative $\ddot{\boldsymbol{J}}$ of the Jacobian, is
$\dddot{\boldsymbol{p}}=\boldsymbol{J}(\boldsymbol{q}) \dddot{\boldsymbol{q}}+2 \dot{\boldsymbol{J}}(\boldsymbol{q}) \ddot{\boldsymbol{q}}+\ddot{\boldsymbol{J}}(\boldsymbol{q}) \dot{\boldsymbol{q}}=\boldsymbol{J}(\boldsymbol{q}) \dddot{\boldsymbol{q}}+2 \dot{\boldsymbol{J}}(\boldsymbol{q}) \ddot{\boldsymbol{q}}+\left(\begin{array}{ccc}s_{1} \dot{q}_{1}^{2}-c_{1} \ddot{q}_{1} & s_{2} \dot{q}_{2}^{2}-c_{2} \ddot{q}_{2} & s_{3} \dot{q}_{3}^{2}-c_{3} \ddot{q}_{3} \\ -c_{1} \dot{q}_{1}^{2}-s_{1} \ddot{q}_{1} & -c_{2} \dot{q}_{2}^{2}-s_{2} \ddot{q}_{2} & -c_{3} \dot{q}_{3}^{2}-s_{3} \ddot{q}_{3}\end{array}\right) \dot{\boldsymbol{q}}$.
When the initial conditions of the robot are perfectly matched with the desired end-effector trajectory,

$$
\begin{equation*}
\boldsymbol{p}(\boldsymbol{q}(0))=\boldsymbol{p}_{d}(0), \quad \boldsymbol{J}(\boldsymbol{q}(0)) \dot{\boldsymbol{q}}(0)=\dot{\boldsymbol{p}}_{d}(0), \quad \boldsymbol{J}(\boldsymbol{q}(0)) \ddot{\boldsymbol{q}}(0)+\dot{\boldsymbol{J}}(\boldsymbol{q}(0)) \dot{\boldsymbol{q}}(0)=\ddot{\boldsymbol{p}}_{d}(0), \tag{3}
\end{equation*}
$$

the nominal solution for executing $\boldsymbol{p}_{d}(t)$ with minimum norm of the joint jerk is (dropping dependencies)

$$
\begin{equation*}
\dddot{q}=J^{\#}\left(\dddot{p}_{d}-2 \dot{J} \ddot{q}-\ddot{J} \dot{q}\right) \tag{4}
\end{equation*}
$$

From (1), we have

$$
\dot{\boldsymbol{p}}_{d}=\binom{6 \cos 3 t}{-3 \sin \left(3 t+\frac{\pi}{2}\right)}, \quad \ddot{\boldsymbol{p}}_{d}=\binom{-18 \sin 3 t}{-9 \cos \left(3 t+\frac{\pi}{2}\right)}, \quad \dddot{\boldsymbol{p}}_{d}=\binom{-54 \cos 3 t}{27 \sin \left(3 t+\frac{\pi}{2}\right)} .
$$

Thus

$$
\boldsymbol{p}_{d}(0)=\binom{1}{2}, \quad \dot{\boldsymbol{p}}_{d}(0)=\binom{6}{-3}, \quad \ddot{\boldsymbol{p}}_{d}(0)=\binom{0}{0}, \quad \dddot{\boldsymbol{p}}_{d}(0)=\binom{-54}{27} .
$$

It is easy to find an initial configuration $\boldsymbol{q}_{0}=\boldsymbol{q}(0)$ that is matched with the initial position of the trajectory:

$$
\boldsymbol{q}_{0}=\left(\begin{array}{lll}
0 & \pi / 2 & \pi / 2
\end{array}\right)^{T}[\mathrm{rad}] \quad \Rightarrow \quad \boldsymbol{p}\left(\boldsymbol{q}_{0}\right)=\boldsymbol{p}_{d}(0) .
$$

In this configuration, the Jacobian is full rank and its pseudoinverse is easily computed as

$$
\boldsymbol{J}_{0}=\boldsymbol{J}\left(\boldsymbol{q}_{0}\right)=\left(\begin{array}{ccc}
0 & -1 & -1 \\
1 & 0 & 0
\end{array}\right) \quad \Rightarrow \quad \boldsymbol{J}_{0}^{\#}=\boldsymbol{J}_{0}^{T}\left(\boldsymbol{J}_{0} \boldsymbol{J}_{0}^{T}\right)^{-1}=\left(\begin{array}{cc}
0 & 1 \\
-0.5 & 0 \\
-0.5 & 0
\end{array}\right)
$$

The associated initial joint velocity $\dot{\boldsymbol{q}}_{0}=\dot{\boldsymbol{q}}(0)$ and acceleration $\ddot{\boldsymbol{q}}_{0}=\ddot{\boldsymbol{q}}(0)$ can be computed as minimum norm solutions at their differential level. We have

$$
\dot{\boldsymbol{q}}_{0}=\boldsymbol{J}_{0}^{\#} \dot{\boldsymbol{p}}_{d}(0)=\left(\begin{array}{c}
-3 \\
-3 \\
-3
\end{array}\right)[\mathrm{rad} / \mathrm{s}] .
$$

From this, evaluating

$$
\dot{\boldsymbol{J}}_{0} \dot{\boldsymbol{q}}_{0}=\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 3
\end{array}\right)\left(\begin{array}{l}
-3 \\
-3 \\
-3
\end{array}\right)=\binom{-9}{-18}
$$

we obtain also

$$
\ddot{\boldsymbol{q}}_{0}=\boldsymbol{J}_{0}^{\#}\left(\ddot{\boldsymbol{p}}_{d}(0)-\dot{\boldsymbol{J}}_{0} \dot{\boldsymbol{q}}_{0}\right)=-\boldsymbol{J}_{0}^{\#} \dot{\boldsymbol{J}}_{0} \dot{\boldsymbol{q}}_{0}=\left(\begin{array}{c}
18 \\
-4.5 \\
-4.5
\end{array}\right)\left[\mathrm{rad} / \mathrm{s}^{2}\right] .
$$

Evaluating now

$$
\dot{\boldsymbol{J}}_{0} \ddot{\boldsymbol{q}}_{0}=\binom{54}{-27}, \quad \ddot{\boldsymbol{J}}_{0} \dot{\boldsymbol{q}}_{0}=\left(\begin{array}{ccc}
-18 & 9 & 9 \\
-9 & 4.5 & 4.5
\end{array}\right)\left(\begin{array}{l}
-3 \\
-3 \\
-3
\end{array}\right)=\binom{0}{0}=\mathbf{0},
$$

from eq. (4) we finally obtain the jerk command at time $t=0$:

$$
\dddot{\boldsymbol{q}}(0)=\boldsymbol{J}_{0}^{\#}\left(\dddot{\boldsymbol{p}}_{d}(0)-2 \dot{\boldsymbol{J}}_{0} \ddot{\boldsymbol{q}}_{0}-\ddot{\boldsymbol{J}}_{0} \dot{\boldsymbol{q}}_{0}\right)=\left(\begin{array}{cc}
0 & 1 \\
-0.5 & 0 \\
-0.5 & 0
\end{array}\right)\left(\binom{-54}{27}-2\binom{54}{-27}\right)=\left(\begin{array}{c}
81 \\
81 \\
81
\end{array}\right)\left[\mathrm{rad} / \mathrm{s}^{3}\right] .
$$

Instead, when the initial conditions of the robot are not matched with the desired end-effector trajectory (i.e., if one or more of the identities in (3) is violated), in order to obtain exponential tracking of $\boldsymbol{p}_{d}(t)$, the solution with minimum norm of the joint jerk can be modified as (dropping dependencies)

$$
\begin{equation*}
\dddot{\boldsymbol{q}}=\boldsymbol{J}^{\#}\left(\dddot{\boldsymbol{p}}_{d}+k_{2}\left(\ddot{\boldsymbol{p}}_{d}-\boldsymbol{J} \ddot{\boldsymbol{q}}-\dot{\boldsymbol{J}} \dot{\boldsymbol{q}}\right)+k_{1}\left(\dot{\boldsymbol{p}}_{d}-\boldsymbol{J} \dot{\boldsymbol{q}}\right)+k_{0}\left(\boldsymbol{p}_{d}-\boldsymbol{p}\right)-2 \dot{\boldsymbol{J}} \ddot{\boldsymbol{q}}-\ddot{\boldsymbol{J}} \dot{\boldsymbol{q}}\right), \tag{5}
\end{equation*}
$$

where the scalars k_{0}, k_{1}, and k_{2} are such that

$$
k(s)=s^{3}+k_{2} s^{2}+k_{1} s+k_{0}
$$

is a Hurwitz polynomial, namely it has all roots in the left-hand side of the complex plane. From Routh criterion, this happens if and only if

$$
\begin{equation*}
k_{0}>0, \quad k_{1}>\frac{k_{0}}{k_{2}}>0, \quad k_{2}>0 . \tag{6}
\end{equation*}
$$

To show the transient properties of the control law (5), let the Cartesian position error be defined as $\boldsymbol{e}=\boldsymbol{p}_{d}-\boldsymbol{p} \in \mathbb{R}^{2}$. From

$$
\dddot{e}=\dddot{p}_{d}-\dddot{p}=\dddot{p}_{d}-(J \dddot{q}+2 \dot{J} \ddot{q}+\ddot{J} \dot{q})
$$

using (5) and being $\boldsymbol{J} \boldsymbol{J}^{\#}=\boldsymbol{I}_{2 \times 2}$, it is easy to see that the following linear differential equation holds:

$$
\dddot{\boldsymbol{e}}+k_{2} \ddot{\boldsymbol{e}}+k_{1} \dot{\boldsymbol{e}}+k_{0} \boldsymbol{e}=\mathbf{0} .
$$

Under the conditions (6), the evolution of $e(t)$ and of its time derivatives is that of the modes of an asymptotically stable linear system, namely exponentially or pseudo-exponentially converging to zero.

Exercise 2

We compute first the gravitational potential energy $U_{g}(\boldsymbol{q})=U_{1}+U_{2}+U_{3}$. We have

$$
\begin{aligned}
& U_{1}=m_{1} g_{0} d_{1} \sin q_{1}, \quad U_{2}=m_{2} g_{0}\left(\ell_{1} \sin q_{1}+d_{2} \sin q_{2}\right), \\
& U_{3}=m_{3} g_{0}\left(\ell_{1} \sin q_{1}+\ell_{2} \sin q_{2}+d_{3} \sin q_{3}\right) .
\end{aligned}
$$

Since $d_{i}=\ell_{i} / 2=0.5$, for $i=1,2,3$, it is

$$
U_{g}(\boldsymbol{q})=g_{0}\left(\frac{m_{1}}{2}+m_{2}+m_{3}\right) \sin q_{1}+g_{0}\left(\frac{m_{2}}{2}+m_{3}\right) \sin q_{2}+g_{0} \frac{m_{3}}{2} \sin q_{3}
$$

and

$$
\boldsymbol{g}(\boldsymbol{q})=\left(\frac{\partial U_{g}(\boldsymbol{q})}{\partial \boldsymbol{q}}\right)^{T}=\left(\begin{array}{c}
g_{0}\left(\left(m_{1} / 2\right)+m_{2}+m_{3}\right) \cos q_{1} \\
g_{0}\left(\left(m_{2} / 2\right)+m_{3}\right) \cos q_{2} \\
g_{0}\left(m_{3} / 2\right) \cos q_{3}
\end{array}\right) .
$$

Using the expressions of $\boldsymbol{p}(\boldsymbol{q})$ and $\boldsymbol{J}(\boldsymbol{q})$ from Exercise 1 and the mass data, we evaluate the control law (2) with $\boldsymbol{K}_{P}=k_{P} \cdot \boldsymbol{I}_{2 \times 2}$, at the initial time $t=0$, when $\boldsymbol{q}(0)=\left(\begin{array}{lll}\pi / 2 & 0 & 0\end{array}\right)^{T}$ and $\dot{\boldsymbol{q}}(0)=\mathbf{0}$:

$$
\begin{align*}
\boldsymbol{\tau}(0) & =k_{p} \boldsymbol{J}^{T}(\boldsymbol{q}(0))\left(\boldsymbol{p}_{d}-\boldsymbol{p}(\boldsymbol{q}(0))\right)+\boldsymbol{g}(\boldsymbol{q}(0)) \\
& =k_{p}\left(\begin{array}{cc}
-1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right)\left(\binom{1}{2}-\binom{2}{1}\right)+\left(\begin{array}{c}
0 \\
15 g_{0} \\
5 g_{0}
\end{array}\right)=\left(\begin{array}{c}
k_{p} \\
k_{p}+15 g_{0} \\
k_{p}+5 g_{0}
\end{array}\right), \quad k_{p}>0, g_{0}=9.81>0 . \tag{7}
\end{align*}
$$

Therefore, the largest value $k_{p}>0$ that satisfies the bounds on the joint torques, $\left|\tau_{i}\right| \leq T_{\max }=300 \mathrm{Nm}$, for $i=1,2,3$, is the one that saturates the second torque component, i.e.,

$$
\tau_{2}(0)=k_{p}+15 g_{0}=300[\mathrm{Nm}] \quad \Rightarrow \quad k_{p}=300-15 g_{0} \simeq 152.85
$$

If $\boldsymbol{K}_{P}=\operatorname{diag}\left\{k_{P x}, k_{P y}\right\}$ and all the rest is as before, the control law $\sqrt{2}$ is evaluated again as

$$
\boldsymbol{\tau}(0)=\boldsymbol{J}^{T}(\boldsymbol{q}(0)) \operatorname{diag}\left\{k_{P x}, k_{P y}\right\}\left(\boldsymbol{p}_{d}-\boldsymbol{p}(\boldsymbol{q}(0))\right)+\boldsymbol{g}(\boldsymbol{q}(0))=\left(\begin{array}{c}
k_{P x} \tag{8}\\
k_{P y}+15 g_{0} \\
k_{P y}+5 g_{0}
\end{array}\right), \quad k_{P x}>0, k_{P y}>0 .
$$

Therefore, we can take as the largest gain values those that saturate the first two components of the torque τ, i.e.,

$$
k_{P x}=\tau_{1}(0)=300[\mathrm{Nm}], \quad k_{P y}=300-15 g_{0} \simeq 152.85[\mathrm{Nm}] .
$$

In both cases, the value of $\boldsymbol{K}_{D}=k_{D} \cdot \boldsymbol{I}_{2 \times 2}$ does not play any role (as long as $\dot{\boldsymbol{q}}=\mathbf{0}$).
Finally, consider the case of torque bounds in the form $\left|\tau_{\theta, i}\right| \leq T_{\max }=300 \mathrm{Nm}$, for $i=1,2,3$, where $\boldsymbol{\tau}_{\boldsymbol{\theta}}$ are the torques producing work on the relative coordinates $\boldsymbol{\theta}$ (of the Denavit-Hartenberg convention). Since

$$
\boldsymbol{q}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right) \boldsymbol{\theta}=\boldsymbol{T} \boldsymbol{\theta} \quad \Rightarrow \quad \dot{\boldsymbol{q}}=\boldsymbol{T} \dot{\boldsymbol{\theta}}
$$

from the principle of virtual work $\left(\boldsymbol{\tau}^{T} \dot{\boldsymbol{q}}=\boldsymbol{\tau}_{\boldsymbol{\theta}}^{T} \dot{\boldsymbol{\theta}}\right)$ we have

$$
\boldsymbol{\tau}_{\boldsymbol{\theta}}=\boldsymbol{T}^{T} \boldsymbol{\tau}=\left(\begin{array}{lll}
1 & 1 & 1 \tag{9}\\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) \boldsymbol{\tau} \quad \Rightarrow \quad \boldsymbol{\tau}=\boldsymbol{T}^{-T} \boldsymbol{\tau}_{\boldsymbol{\theta}}=\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right) \boldsymbol{\tau}_{\boldsymbol{\theta}}
$$

Therefore, taking for example the gain structure in (7), it follows that

$$
\left(\begin{array}{c}
-300 \\
-300 \\
-300
\end{array}\right) \leq \boldsymbol{\tau}_{\boldsymbol{\theta}}(0)=\boldsymbol{T}^{T} \boldsymbol{\tau}(0)=\boldsymbol{T}^{T}\left(\begin{array}{c}
k_{p} \\
k_{p}+15 g_{0} \\
k_{p}+5 g_{0}
\end{array}\right)=\left(\begin{array}{c}
3 k_{p}+20 g_{0} \\
2 k_{p}+20 g_{0} \\
k_{p}+5 g_{0}
\end{array}\right) \leq\left(\begin{array}{c}
300 \\
300 \\
300
\end{array}\right)
$$

The largest value $k_{p}>0$ that satisfies all the above bounds is obtained then from the first component:

$$
k_{p}=\frac{300-20 g_{0}}{3} \simeq 34.6[\mathrm{Nm}] .
$$

Note also that, from the linear transformations (9), a feasible cube of side $2 T_{\max }=600 \mathrm{Nm}$ centered in the origin of the $\boldsymbol{\tau}_{\boldsymbol{\theta}}$-space becomes a skewed parallelepiped in the $\boldsymbol{\tau}$-space (and vice versa).

Exercise 3

Following a Lagrangian approach, we compute first the kinetic energy $T(\boldsymbol{q}, \dot{\boldsymbol{q}})=T_{1}+T_{2}+T_{3}$. We have

$$
\begin{aligned}
& T_{1}=\frac{1}{2} m_{1} \dot{q}_{1}^{2}, \quad T_{2}=\frac{1}{2} m_{2}\left(\dot{q}_{1}^{2}+d^{2} \dot{q}_{2}^{2}-2 d \sin q_{2} \dot{q}_{1} \dot{q}_{2}\right)+\frac{1}{2} I_{2} \dot{q}_{2}^{2}, \\
& T_{3}=\frac{1}{2} m_{3}\left(\dot{q}_{1}^{2}+q_{3}^{2} \dot{q}_{2}^{2}+\dot{q}_{3}^{2}-2 q_{3} \sin q_{2} \dot{q}_{1} \dot{q}_{2}+2 \cos q_{2} \dot{q}_{1} \dot{q}_{3}\right)+\frac{1}{2} I_{3} \dot{q}_{2}^{2} .
\end{aligned}
$$

Thus

$$
T=\frac{1}{2} \dot{\boldsymbol{q}}^{T} \boldsymbol{M}(\boldsymbol{q}) \dot{\boldsymbol{q}}=\frac{1}{2} \dot{\boldsymbol{q}}^{T}\left(\begin{array}{ccc}
m_{1}+m_{2}+m_{3} & -\left(m_{2} d+m_{3} q_{3}\right) \sin q_{2} & m_{3} \cos q_{2} \\
& I_{2}+m_{2} d^{2}+I_{3}+m_{3} q_{3}^{2} & 0 \\
\text { symm } & & m_{3}
\end{array}\right) \dot{\boldsymbol{q}} .
$$

The components of the Coriolis and centrifugal vector are computed using the Christoffel's symbols

$$
c_{i}(\boldsymbol{q}, \dot{\boldsymbol{q}})=\dot{\boldsymbol{q}}^{T} \boldsymbol{C}_{i}(\boldsymbol{q}) \dot{\boldsymbol{q}}, \quad \boldsymbol{C}_{i}(\boldsymbol{q})=\frac{1}{2}\left(\frac{\partial \boldsymbol{m}_{i}(\boldsymbol{q})}{\partial \boldsymbol{q}}+\left(\frac{\partial \boldsymbol{m}_{i}(\boldsymbol{q})}{\partial \boldsymbol{q}}\right)^{T}-\frac{\partial \boldsymbol{M}(\boldsymbol{q})}{\partial \boldsymbol{q}_{i}}\right),
$$

being \boldsymbol{m}_{i} the i th column of the inertia matrix $\boldsymbol{M}(\boldsymbol{q})$. We have

$$
\begin{aligned}
\boldsymbol{C}_{1}(\boldsymbol{q}) & =\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -\left(m_{2} d+m_{3} q_{3}\right) \cos q_{2} & -m_{3} \sin q_{2} \\
0 & -m_{3} \sin q_{2} & 0
\end{array}\right) \\
\Rightarrow \quad c_{1}(\boldsymbol{q}, \dot{\boldsymbol{q}}) & =-\left(m_{2} d+m_{3} q_{3}\right) \cos q_{2} \dot{q}_{2}^{2}-2 m_{3} \sin q_{2} \dot{q}_{2} \dot{q}_{3} .
\end{aligned}
$$

Similarly

$$
\boldsymbol{C}_{2}(\boldsymbol{q})=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & m_{3} q_{3} \\
0 & m_{3} q_{3} & 0
\end{array}\right) \quad \Rightarrow \quad c_{2}(\boldsymbol{q}, \dot{\boldsymbol{q}})=2 m_{3} q_{3} \dot{q}_{2} \dot{q}_{3},
$$

and

$$
C_{3}(\boldsymbol{q})=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -m_{3} q_{3} & 0 \\
0 & 0 & 0
\end{array}\right) \quad \Rightarrow \quad c_{3}(\boldsymbol{q}, \dot{\boldsymbol{q}})=-m_{3} q_{3} \dot{q}_{2}^{2} .
$$

A factorization of the Coriolis and centrifugal terms $\boldsymbol{c}(\boldsymbol{q}, \dot{\boldsymbol{q}})=\boldsymbol{C}(\boldsymbol{q}, \dot{\boldsymbol{q}}) \dot{\boldsymbol{q}}$ that satisfies the skew-symmetric property is given by

$$
\boldsymbol{C}(\boldsymbol{q}, \dot{\boldsymbol{q}})=\left(\begin{array}{c}
\dot{\boldsymbol{q}}^{T} \boldsymbol{C}_{1}(\boldsymbol{q}) \\
\dot{\boldsymbol{q}}^{T} \boldsymbol{C}_{2}(\boldsymbol{q}) \\
\dot{\boldsymbol{q}}^{T} \boldsymbol{C}_{3}(\boldsymbol{q})
\end{array}\right)=\left(\begin{array}{ccc}
0 & -\left(m_{2} d+m_{3} q_{3}\right) \cos q_{2} \dot{q}_{2}-m_{3} \sin q_{2} \dot{q}_{3} & -m_{3} \sin q_{2} \dot{q}_{2} \\
0 & m_{3} q_{3} \dot{q}_{3} & m_{3} q_{3} \dot{q}_{2} \\
0 & -m_{3} q_{3} \dot{q}_{2} & 0
\end{array}\right) .
$$

Being
$\dot{\boldsymbol{M}}(\boldsymbol{q})=\left(\begin{array}{ccc}0 & -\left(m_{2} d+m_{3} q_{3}\right) \cos q_{2} \dot{q}_{2}-m_{3} \sin q_{2} \dot{q}_{3} & -m_{3} \sin q_{2} \dot{q}_{2} \\ -\left(m_{2} d+m_{3} q_{3}\right) \cos q_{2} \dot{q}_{2}-m_{3} \sin q_{2} \dot{q}_{3} & 2 m_{3} q_{3} \dot{q}_{3} & 0 \\ -m_{3} \sin q_{2} \dot{q}_{2} & 0 & 0\end{array}\right)$,
it is easy to check that the matrix $\dot{M}-2 \boldsymbol{C}$ is skew-symmetric.
For the potential energy due to gravity, $U_{g}(\boldsymbol{q})=U_{1}+U_{2}+U_{3}$, we have (up to a constant)

$$
U_{1}=0, \quad U_{2}=m_{2} g_{0} d \sin q_{2}, \quad U_{3}=m_{3} g_{0} q_{3} \sin q_{2}
$$

Thus

$$
\boldsymbol{g}(\boldsymbol{q})=\left(\frac{\partial U_{g}(\boldsymbol{q})}{\partial \boldsymbol{q}}\right)^{T}=\left(\begin{array}{c}
0 \\
\left(m_{2} d+m_{3} q_{3}\right) g_{0} \cos q_{2} \\
m_{3} g_{0} \sin q_{2}
\end{array}\right) .
$$

The unforced equilibrium configurations are

$$
\boldsymbol{g}\left(\boldsymbol{q}_{e}\right)=\mathbf{0} \quad \Rightarrow \quad q_{e, 1}=\text { any, } \quad q_{e, 2}=\{0, \pi\}, \quad q_{e, 3}=-\frac{m_{2}}{m_{3}} d .
$$

Taking a further partial derivative of \boldsymbol{g} w.r.t. \boldsymbol{q}, we obtain the matrix

$$
\frac{\partial \boldsymbol{g}(\boldsymbol{q})}{\partial \boldsymbol{q}}=\frac{\partial^{2} U_{g}(\boldsymbol{q})}{\partial \boldsymbol{q}^{2}}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -\left(m_{2} d+m_{3} q_{3}\right) g_{0} \sin q_{2} & m_{3} g_{0} \cos q_{2} \\
0 & m_{3} g_{0} \cos q_{2} & 0
\end{array}\right)=\boldsymbol{A}(\boldsymbol{q}) .
$$

Matrix \boldsymbol{A} is symmetric, thus it has real eigenvalues. To have all non-negative eigenvalues (so that we can order them and find their maximum, as requested by the definition of norm of a matrix that we use), we compute the semi-positive definite matrix

$$
\boldsymbol{A}^{T}(\boldsymbol{q}) \boldsymbol{A}(\boldsymbol{q})=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & g_{0}^{2}\left(\left(m_{2} d+m_{3} q_{3}\right)^{2} \sin ^{2} q_{2}+m_{3}^{2} \cos ^{2} q_{2}\right) & -g_{0}^{2} m_{3}\left(m_{2} d+m_{3} q_{3}\right) \sin q_{2} \cos q_{2} \\
0 & -g_{0}^{2} m_{3}\left(m_{2} d+m_{3} q_{3}\right) \sin q_{2} \cos q_{2} & g_{0}^{2} m_{3}^{2} \cos ^{2} q_{2}
\end{array}\right),
$$

which has clearly one zero eigenvalue. Denote by \boldsymbol{B} the lower 2×2 block on the diagonal of this matrix. The characteristic polynomial of $\boldsymbol{A}^{T} \boldsymbol{A}$ is then

$$
\operatorname{det}\left(\lambda \boldsymbol{I}-\boldsymbol{A}^{T}(\boldsymbol{q}) \boldsymbol{A}(\boldsymbol{q})\right)=\lambda \cdot \operatorname{det}(\lambda \boldsymbol{I}-\boldsymbol{B}(\boldsymbol{q}))=\lambda\left(\lambda^{2}-\operatorname{trace}\{\boldsymbol{B}(\boldsymbol{q})\} \lambda+\operatorname{det}\{\boldsymbol{B}(\boldsymbol{q})\}\right)
$$

with $\operatorname{trace}\{\boldsymbol{B}(\boldsymbol{q})\}>0$ and $\operatorname{det}\{\boldsymbol{B}(\boldsymbol{q})\}>0$. Therefore, the maximum eigenvalue of $\boldsymbol{A}^{T} \boldsymbol{A}$ is

$$
\lambda_{\max }\left(\boldsymbol{A}^{T}(\boldsymbol{q}) \boldsymbol{A}(\boldsymbol{q})\right)=\frac{1}{2} \operatorname{trace}\{\boldsymbol{B}(\boldsymbol{q})\}+\frac{1}{2} \sqrt{(\operatorname{trace}\{\boldsymbol{B}(\boldsymbol{q})\})^{2}-4 \operatorname{det}\{\boldsymbol{B}(\boldsymbol{q})\}}
$$

Since we are looking for a bound on the norm of $\boldsymbol{A}(\boldsymbol{q})$, we can write the chain of inequalities

$$
\begin{aligned}
\lambda_{\text {max }}\left(\boldsymbol{A}^{T}(\boldsymbol{q}) \boldsymbol{A}(\boldsymbol{q})\right) & \leq \operatorname{trace}\{\boldsymbol{B}(\boldsymbol{q})\}=g_{0}^{2}\left(\left(m_{2} d+m_{3} q_{3}\right)^{2} \sin ^{2} q_{2}+2 m_{3}^{2} \cos ^{2} q_{2}\right) \\
& <g_{0}^{2}\left(\left(m_{2} d+m_{3} q_{3}\right)^{2}+2 m_{3}^{2}\right)<g_{0}^{2}\left(m_{2} d+m_{3}\left|q_{3}\right|+\sqrt{2} m_{3}\right)^{2} .
\end{aligned}
$$

Therefore, we finally obtain the requested bound

$$
\left\|\frac{\partial \boldsymbol{g}(\boldsymbol{q})}{\partial \boldsymbol{q}}\right\|=\|\boldsymbol{A}(\boldsymbol{q})\|=\sqrt{\lambda_{\max }\left(\boldsymbol{A}^{T}(\boldsymbol{q}) \boldsymbol{A}(\boldsymbol{q})\right)}<g_{0}\left(m_{2} d+m_{3}\left|q_{3}\right|+m_{3} \sqrt{2}\right)=\alpha+\beta\left|q_{3}\right|, \quad \forall \boldsymbol{q} \in \mathbb{R}^{3},
$$

with

$$
\alpha=g_{0}\left(m_{2} d+m_{3} \sqrt{2}\right), \quad \beta=g_{0} m_{3} .
$$

