
Robotics II
June 6, 2017

Exercise 1

Consider a planar 3R robot with unitary link lengths as in Fig. 1, where the generalized coordinates q
are defined as the absolute angles of the links w.r.t. the x-axis. The position of the robot end-effector
p = p(q), as obtained through the direct kinematics, should follow the desired trajectory

pd(t) =

 
1 + 2 sin 3t

2 + cos
`
3t+ π

2

´ ! , for t ≥ 0. (1)

The robot is kinematically redundant for this task.

• Define a differential inversion scheme at the level of joint jerk commands
...
q such that the squared

norm ‖...q ‖2 is locally minimized and the trajectory can be executed exactly right from the initial
time t = 0.

• Provide numerical values for the initial joint position q(0), joint velocity q̇(0), and joint acceleration
q̈(0) such that there is a perfect initial matching with the desired trajectory. Provide also the
numerical value of the initial locally optimal command

...
q (0).

• Suppose that there is no perfect matching between the initial kinematic conditions of the robot
and the trajectory at time t = 0. How can we modify the command law for

...
q such that the error

e(t) = pd(t)− p(t) and all its time derivatives will exponentially converge to zero?
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Figure 1: A planar 3R robot with absolute angles as generalized coordinates q = (q1, q2, q3).

Exercise 2

For the same robot in Fig. 1, and using the same coordinates defined therein, assume that the three links
have equal, uniformly distributed mass mi = m = 10 kg, for i = 1, 2, 3. Each torque τi delivered by
the motors and performing work on the absolute coordinate qi is bounded as |τi| ≤ Tmax = 300 Nm, for
i = 1, 2, 3. Consider the Cartesian regulation control law

τ = JT(q)KP

“
pd − p(q)

”
−KDq̇ + g(q), with pd =

 
1

2

!
, (2)

where the gain matrices KP and KD are diagonal and positive definite. Let the robot starts at rest at

t = 0 in the configuration q(0) =
`
π/2 0 0

´T
.

• If the gain matrices are of the form KP = kP · I2×2 and KD = kD · I2×2, provide the largest values
for the scalars kP and kD such that τ (0) in (2) does not violate its bounds.

• Let now the positional gain matrix be KP = diag{kPx, kPy}, while KD is as before. Provide the
largest values for the scalars kPx, kPy, and kd such that τ (0) in (2) does not violate its bounds.

• How would things change if the bounds were set as |τθ,i| ≤ Tmax = 300 Nm, where τθ,i is the torque
delivered by the motors and performing work on the relative (Denavit-Hartenberg) coordinate θi,
for i = 1, 2, 3?

[Turn sheet for the next exercise]
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Exercise 3

Consider the planar PRP robot in Fig. 2.
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Figure 2: A planar PRP robot moving in a vertical plane, with definition of the generalized
coordinates q = (q1, q2, q3) to be used.

• Determine the expressions of the inertial, Coriolis and centrifugal, and gravity terms in the dynamic
model expressed in the usual Lagrangian form

M(q)q̈ + c(q, q̇) + g(q) = τ .

• Find a factorization c(q, q̇) = C(q.q̇)q̇ such that Ṁ − 2C is a skew-symmetric matrix.

• Find all equilibrium configurations qe (i.e., such that g(qe) = 0), if any.

• Provide symbolic expressions for the scalar coefficients α > 0 and β > 0 such that the following
global linear bound holds for the Hessian of the gravitational potential energy Ug(q):‚‚‚‚∂2Ug(q)

∂q2

‚‚‚‚ =

‚‚‚‚∂g(q)

∂q

‚‚‚‚ ≤ α+ β |q3|, ∀q ∈ R3.

[240 minutes; open books but no computer or smartphone]
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Solution
June 6, 2017

Exercise 1

The direct kinematics of the planar 3R robot with unitary link lengths using absolute coordinates (i.e.,
the link angles w.r.t. the x-axis) is

p = p(q) =

 
c1 + c2 + c3

s1 + s2 + s3

!
.

The associated first-order differential kinematics, with the Jacobian matrix, is

ṗ =
∂p(q)

∂q
q̇ = J(q) q̇ =

 
−s1 −s2 −s3
c1 c2 c3

!
q̇.

The second-order differential kinematics, with the first time-derivative J̇ of the Jacobian, is

p̈ = J(q) q̈ +J̇(q) q̇ = J(q) q̈ +

 
−c1q̇1 −c2q̇2 −c3q̇3
−s1q̇1 −s2q̇2 −s3q̇3

!
q̇.

The third-order differential kinematics, including the second time-derivative J̈ of the Jacobian, is

...
p = J(q)

...
q + 2J̇(q) q̈ +J̈(q) q̇ = J(q)

...
q + 2J̇(q) q̈ +

 
s1q̇

2
1 − c1q̈1 s2q̇

2
2 − c2q̈2 s3q̇

2
3 − c3q̈3

−c1q̇21 − s1q̈1 −c2q̇22 − s2q̈2 −c3q̇23 − s3q̈3

!
q̇.

When the initial conditions of the robot are perfectly matched with the desired end-effector trajectory,

p(q(0)) = pd(0), J(q(0)) q̇(0) = ṗd(0), J(q(0)) q̈(0) +J̇(q(0)) q̇(0) = p̈d(0), (3)

the nominal solution for executing pd(t) with minimum norm of the joint jerk is (dropping dependencies)

...
q = J#

“
...
pd − 2J̇ q̈ −J̈ q̇

”
. (4)

From (1), we have

ṗd =

 
6 cos 3t

−3 sin
`
3t+ π

2

´ ! , p̈d =

 
−18 sin 3t

−9 cos
`
3t+ π

2

´ ! , ...
pd =

 
−54 cos 3t

27 sin
`
3t+ π

2

´ ! .
Thus

pd(0) =

 
1

2

!
, ṗd(0) =

 
6

−3

!
, p̈d(0) =

 
0

0

!
,

...
pd(0) =

 
−54

27

!
.

It is easy to find an initial configuration q0 = q(0) that is matched with the initial position of the trajectory:

q0 =
`

0 π/2 π/2
´T

[rad] ⇒ p(q0) = pd(0).

In this configuration, the Jacobian is full rank and its pseudoinverse is easily computed as

J0 = J(q0) =

 
0 −1 −1

1 0 0

!
⇒ J#

0 = JT0

“
J0J

T
0

”−1

=

0B@ 0 1

−0.5 0

−0.5 0

1CA
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The associated initial joint velocity q̇0 = q̇(0) and acceleration q̈0 = q̈(0) can be computed as minimum
norm solutions at their differential level. We have

q̇0 = J#
0 ṗd(0) =

0B@ −3

−3

−3

1CA [rad/s].

From this, evaluating

J̇0 q̇0 =

 
3 0 0

0 3 3

!0B@ −3

−3

−3

1CA =

 
−9

−18

!
,

we obtain also

q̈0 = J#
0

“
p̈d(0)−J̇0 q̇0

”
= −J#

0 J̇0 q̇0 =

0B@ 18

−4.5

−4.5

1CA [rad/s2].

Evaluating now

J̇0 q̈0 =

 
54

−27

!
, J̈0 q̇0 =

 
−18 9 9

−9 4.5 4.5

!0B@ −3

−3

−3

1CA =

 
0

0

!
= 0,

from eq. (4) we finally obtain the jerk command at time t = 0:

...
q (0) = J#

0

“
...
pd(0)− 2J̇0 q̈0 −J̈0 q̇0

”
=

0B@ 0 1

−0.5 0

−0.5 0

1CA  −54

27

!
− 2

 
54

−27

!!
=

0B@ 81

81

81

1CA [rad/s3].

Instead, when the initial conditions of the robot are not matched with the desired end-effector trajectory
(i.e., if one or more of the identities in (3) is violated), in order to obtain exponential tracking of pd(t),
the solution with minimum norm of the joint jerk can be modified as (dropping dependencies)

...
q = J#

“
...
pd + k2

“
p̈d − Jq̈ −J̇ q̇

”
+ k1 (ṗd − Jq̇) + k0 (pd − p)− 2J̇ q̈ −J̈ q̇

”
, (5)

where the scalars k0, k1, and k2 are such that

k(s) = s3 + k2s
2 + k1s+ k0

is a Hurwitz polynomial, namely it has all roots in the left-hand side of the complex plane. From Routh
criterion, this happens if and only if

k0 > 0, k1 >
k0

k2
> 0, k2 > 0. (6)

To show the transient properties of the control law (5), let the Cartesian position error be defined as
e = pd − p ∈ R2. From

...
e =

...
pd −

...
p =

...
pd −

“
J

...
q + 2J̇ q̈ +J̈ q̇

”
using (5) and being JJ# = I2×2, it is easy to see that the following linear differential equation holds:

...
e + k2 ë+ k1 ė+ k0 e = 0.

Under the conditions (6), the evolution of e(t) and of its time derivatives is that of the modes of an
asymptotically stable linear system, namely exponentially or pseudo-exponentially converging to zero.
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Exercise 2

We compute first the gravitational potential energy Ug(q) = U1 + U2 + U3. We have

U1 = m1g0d1 sin q1, U2 = m2g0 (`1 sin q1 + d2 sin q2) ,

U3 = m3g0 (`1 sin q1 + `2 sin q2 + d3 sin q3) .

Since di = `i/2 = 0.5, for i = 1, 2, 3, it is

Ug(q) = g0
“m1

2
+m2 +m3

”
sin q1 + g0

“m2

2
+m3

”
sin q2 + g0

m3

2
sin q3

and

g(q) =

„
∂Ug(q)

∂q

«T
=

0B@ g0 ((m1/2) +m2 +m3) cos q1

g0 ((m2/2) +m3) cos q2

g0(m3/2) cos q3

1CA .

Using the expressions of p(q) and J(q) from Exercise 1 and the mass data, we evaluate the control law (2)

with KP = kP · I2×2, at the initial time t = 0, when q(0) =
`
π/2 0 0

´T
and q̇(0) = 0:

τ (0) = kp J
T (q(0)) (pd − p(q(0))) + g(q(0))

= kp

0B@ −1 0

0 1

0 1

1CA  1

2

!
−

 
2

1

!!
+

0B@ 0

15g0

5g0

1CA =

0B@ kp

kp + 15g0

kp + 5g0

1CA , kp > 0, g0 = 9.81 > 0.
(7)

Therefore, the largest value kp > 0 that satisfies the bounds on the joint torques, |τi| ≤ Tmax = 300 Nm,
for i = 1, 2, 3, is the one that saturates the second torque component, i.e.,

τ2(0) = kp + 15g0 = 300 [Nm] ⇒ kp = 300− 15g0 ' 152.85.

If KP = diag{kPx, kPy} and all the rest is as before, the control law (2) is evaluated again as

τ (0) = JT (q(0)) diag{kPx, kPy} (pd − p(q(0))) + g(q(0)) =

0B@ kPx

kPy + 15g0

kPy + 5g0

1CA , kPx > 0, kPy > 0. (8)

Therefore, we can take as the largest gain values those that saturate the first two components of the torque
τ , i.e.,

kPx = τ1(0) = 300 [Nm], kPy = 300− 15g0 ' 152.85 [Nm].

In both cases, the value of KD = kD · I2×2 does not play any role (as long as q̇ = 0).

Finally, consider the case of torque bounds in the form |τθ,i| ≤ Tmax = 300 Nm, for i = 1, 2, 3, where
τ θ are the torques producing work on the relative coordinates θ (of the Denavit-Hartenberg convention).
Since

q =

0B@ 1 0 0

1 1 0

1 1 1

1CAθ = Tθ ⇒ q̇ = T θ̇,

from the principle of virtual work (τT q̇ = τTθ θ̇) we have

τ θ = T T τ =

0B@ 1 1 1

0 1 1

0 0 1

1CA τ ⇒ τ = T−T τθ =

0B@ 1 −1 0

0 1 −1

0 0 1

1CA τ θ. (9)
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Therefore, taking for example the gain structure in (7), it follows that0B@ −300

−300

−300

1CA ≤ τ θ(0) = T T τ (0) = T T

0B@ kp

kp + 15g0

kp + 5g0

1CA =

0B@ 3kp + 20g0

2kp + 20g0

kp + 5g0

1CA ≤
0B@ 300

300

300

1CA .

The largest value kp > 0 that satisfies all the above bounds is obtained then from the first component:

kp =
300− 20g0

3
' 34.6 [Nm].

Note also that, from the linear transformations (9), a feasible cube of side 2Tmax = 600 Nm centered in
the origin of the τ θ-space becomes a skewed parallelepiped in the τ -space (and vice versa).

Exercise 3

Following a Lagrangian approach, we compute first the kinetic energy T (q, q̇) = T1 + T2 + T3. We have

T1 = 1
2
m1q̇

2
1 , T2 = 1

2
m2

`
q̇21 + d2 q̇22 − 2d sin q2 q̇1q̇2

´
+ 1

2
I2 q̇

2
2 ,

T3 = 1
2
m3

`
q̇21 + q23 q̇

2
2 + q̇23 − 2q3 sin q2 q̇1q̇2 + 2 cos q2 q̇1q̇3

´
+ 1

2
I3 q̇

2
2 .

Thus

T =
1

2
q̇TM(q)q̇ =

1

2
q̇T

0B@ m1 +m2 +m3 −(m2d+m3q3) sin q2 m3 cos q2

I2 +m2d
2 + I3 +m3q

2
3 0

symm m3

1CA q̇.
The components of the Coriolis and centrifugal vector are computed using the Christoffel’s symbols

ci(q, q̇) = q̇TCi(q)q̇, Ci(q) =
1

2

 
∂mi(q)

∂q
+

„
∂mi(q)

∂q

«T
− ∂M(q)

∂qi

!
,

being mi the ith column of the inertia matrix M(q). We have

C1(q) =

0B@ 0 0 0

0 −(m2d+m3q3) cos q2 −m3 sin q2

0 −m3 sin q2 0

1CA
⇒ c1(q, q̇) = −(m2d+m3q3) cos q2 q̇

2
2 − 2m3 sin q2 q̇2q̇3.

Similarly

C2(q) =

0B@ 0 0 0

0 0 m3q3

0 m3q3 0

1CA ⇒ c2(q, q̇) = 2m3q3 q̇2q̇3 ,

and

C3(q) =

0B@ 0 0 0

0 −m3q3 0

0 0 0

1CA ⇒ c3(q, q̇) = −m3q3 q̇
2
2 .

A factorization of the Coriolis and centrifugal terms c(q, q̇) = C(q, q̇)q̇ that satisfies the skew-symmetric
property is given by

C(q, q̇) =

0B@ q̇TC1(q)

q̇TC2(q)

q̇TC3(q)

1CA =

0B@ 0 −(m2d+m3q3) cos q2 q̇2 −m3 sin q2 q̇3 −m3 sin q2 q̇2

0 m3q3 q̇3 m3q3 q̇2

0 −m3q3 q̇2 0

1CA .
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Being

Ṁ(q) =

0B@ 0 −(m2d+m3q3) cos q2q̇2 −m3 sin q2 q̇3 −m3 sin q2 q̇2

−(m2d+m3q3) cos q2 q̇2 −m3 sin q2 q̇3 2m3q3 q̇3 0

−m3 sin q2 q̇2 0 0

1CA ,

it is easy to check that the matrix Ṁ − 2C is skew-symmetric.

For the potential energy due to gravity, Ug(q) = U1 + U2 + U3, we have (up to a constant)

U1 = 0, U2 = m2g0 d sin q2, U3 = m3g0 q3 sin q2.

Thus

g(q) =

„
∂Ug(q)

∂q

«T
=

0B@ 0

(m2d+m3q3)g0 cos q2

m3g0 sin q2

1CA .

The unforced equilibrium configurations are

g(qe) = 0 ⇒ qe,1 = any, qe,2 = {0, π}, qe,3 = −m2

m3
d.

Taking a further partial derivative of g w.r.t. q, we obtain the matrix

∂g(q)

∂q
=
∂2Ug(q)

∂q2
=

0B@ 0 0 0

0 −(m2d+m3q3)g0 sin q2 m3g0 cos q2

0 m3g0 cos q2 0

1CA = A(q).

Matrix A is symmetric, thus it has real eigenvalues. To have all non-negative eigenvalues (so that we can
order them and find their maximum, as requested by the definition of norm of a matrix that we use), we
compute the semi-positive definite matrix

AT (q)A(q) =

0B@ 0 0 0

0 g2
0

`
(m2d+m3q3)2 sin2 q2 +m2

3 cos2 q2
´
−g2

0m3 (m2d+m3q3) sin q2 cos q2

0 −g2
0m3 (m2d+m3q3) sin q2 cos q2 g2

0m
2
3 cos2 q2

1CA ,

which has clearly one zero eigenvalue. Denote by B the lower 2× 2 block on the diagonal of this matrix.
The characteristic polynomial of ATA is then

det
“
λI −AT (q)A(q)

”
= λ · det (λI −B(q)) = λ

`
λ2 − trace{B(q)}λ+ det{B(q)}

´
with trace{B(q)} > 0 and det{B(q)} > 0. Therefore, the maximum eigenvalue of ATA is

λmax
“
AT (q)A(q)

”
=

1

2
trace{B(q)}+

1

2

p
(trace{B(q)})2 − 4 det{B(q)}

Since we are looking for a bound on the norm of A(q), we can write the chain of inequalities

λmax
`
AT (q)A(q)

´
≤ trace{B(q)} = g2

0

`
(m2d+m3q3)2 sin2 q2 + 2m2

3 cos2 q2
´

< g2
0

`
(m2d+m3q3)2 + 2m2

3

´
< g2

0(m2d+m3|q3|+
√

2m3)2.

Therefore, we finally obtain the requested bound‚‚‚‚∂g(q)

∂q

‚‚‚‚ = ‖A(q)‖ =
q
λmax

`
AT (q)A(q)

´
< g0 (m2d+m3|q3|+m3

√
2) = α+ β |q3|, ∀q ∈ R3,

with
α = g0(m2d+m3

√
2), β = g0m3.

∗ ∗ ∗ ∗ ∗
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