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Exercise 1
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Figure 1: A planar RP robot with skewed prismatic joint.

Derive the inertia matrix B(q) and the gravity vector g(q) in the dynamic model of the planar
RP robot in Fig. 1, using the Lagrangian coordinates q = (q1, q2) defined therein and assuming
uniform mass distribution for the two links. Determine all equilibrium configurations q0 under no
external or dissipative forces/torques nor actuation inputs.

Exercise 2
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Figure 2: A mechanical system consisting of three masses connected by linear springs.

In the three-body mechanical system shown in Fig. 2, the first body (with mass m1 > 0 and
position q1) is actuated by a force u and is connected to a second body (with mass m2 > 0 and
position q2) through a spring of constant stiffness k1 > 0. The second body is in turn connected
to a third one (having mass m3 > 0 and position q3) through another spring of constant stiffness
k2 > 0. Each mass is subject to a dissipative force when moving on the ground, in the form of a
viscous friction with coefficient d > 0 (equal for all three masses).

• Derive the dynamic model of this system by following a Lagrangian approach and using the
set of generalized coordinates q = (q1, q2, q3).

• Determine all equilibrium states, if any, of the system when u = 0, as well as all steady-state
conditions when a constant force u = ū > 0 is being applied.

• Prove that a control law of the form

u = kp(qd − q1), kp > 0 (1)

will globally asymptotically stabilize the closed-loop system to a unique equilibrium state
(which one?). Hint: Use either a energy-based Lyapunov approach or exploit the linearity of
the system dynamics.

[150 minutes; open books]
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Solution
October 28, 2016

Exercise 1

For i = 1, 2, let mi be the mass of link i and Ii its inertia around an axis normal to the plane
of motion, passing through the center of mass (which is at the midpoint of the link, because of
the assumption on uniform mass distribution). Moreover, let d > 0 be the (constant) distance of
the center of mass of link 2 (which is of unspecified length) from its tip, namely from the point
characterized by the coordinate q2. With this in mind, we follow a Lagrangian approach and
compute the kinetic and the potential energy of the robot system in order to obtain, respectively,
B(q) and g(q).

The kinetic energy of the first link is

T1 =
1
2

(
I1 +m1

(
`1
2

)2
)
q̇21 .

For the second link, the position of the center of mass is

pc2 =

(
`1 cos q1 + (q2 − d) cos (q1 + π/4)
`1 sin q1 + (q2 − d) sin (q1 + π/4)

)
.

Thus, its velocity is

vc2 = ṗc2 =
(
− (`1 sin q1 + (q2 − d) sin (q1 + π/4)) q̇1 + cos (q1 + π/4) q̇2
(`1 cos q1 + (q2 − d) cos (q1 + π/4)) q̇1 + sin (q1 + π/4) q̇2

)
.

The (scalar) angular velocity of link 2 is simply q̇1. As a result, the kinetic energy of the second
link is

T2 =
1
2
((
I2 +m2

(
`21 + (q2 − d)2 + 2`1(q2 − d) cos (π/4)

))
q̇21 +m2 q̇

2
2 + 2m2`1 sin (π/4) q̇1q̇2

)
.

Therefore,

T = T1 + T2 =
1
2

q̇T

(
b11(q2) b12

b21 b22

)
q̇ =

1
2

q̇T B(q)q̇,

from which the elements bij of the 2 × 2, symmetric, positive definite inertia matrix B(q) are
obtained as

b11(q2) = I1 +m1

(
`1
2

)2

+ I2 +m2

(
`21 + (q2 − d)2 + `1(q2 − d)

√
2
)

b12 = b21 = m2`1

√
2

2
b22 = m2,

where sin (π/4) = cos (π/4) =
√

2/2 has been used.

2



For the potential energy U = U1 +U2 of the two robot links due to gravity, we use the expressions
of the y-component of their center of mass:

U1(q1) = m1g0

(
`1
2

)
sin q1,

U2(q1, q2) = m2g0 (`1 sin q1 + (q2 − d) sin (q1 + π/4)) .

Therefore, the gravity vector is

g(q) =
(
∂U(q)
∂q

)T

= g0

( (m1

2
+m2

)
`1 cos q1 +m2(q2 − d) cos (q1 + π/4)

m2 sin (q1 + π/4)

)
.

Solving for g(q0) = 0 provides all equilibrium configurations q0. For this RP robot, there are two
unforced equilibria:

q0 =
(
−π

4
d− `1

√
2

2

(
1 +

m1

2m2

) )T

and

q0 =
(

3π
4

d− `1
√

2
2

(
1 +

m1

2m2

) )T

.

Exercise 2

By following a Lagrangian approach, we compute first the kinetic and the potential (elastic) energy
of the mechanical system in Fig. 2:

T =
1
2
(
m1q̇

2
1 +m2q̇

2
2 +m3q̇

2
3

)
, U =

1
2
(
k1(q1 − q2)2 + k2(q2 − q3)2

)
.

Applying the Euler-Lagrange equations to L = T − U and keeping into account the dissipative
forces due to viscous friction, yields the three second-order differential equations

m1q̈1 + k1(q1 − q2) = u− dq̇1
m2q̈2 + k1(q2 − q1) + k2(q2 − q3) = −dq̇2

m3q̈3 + k2(q3 − q2) = −dq̇3.
(2)

Indeed, the same result would have been obtained by Newton’s law (balance of forces) applied to
the three masses.

For the unforced (u = 0) equilibrium configurations, we set q̇ = q̈ = 0 in (2) and obtain an infinity
of equilibria q0, all with equal q1 = q2 = q3 at a common arbitrary value. The two springs will be
undeformed in this rest condition.

For the forced case with u = ū > 0, it is rather tedious but straightforward exercise (using, e.g.,
Laplace transforms) to verify that the system response to a constant force input will asymptotically
reach a steady-state condition, where all masses will be moving at the same constant speed q̇1 =
q̇2 = q̇3 = ū/3d. This specific value can be found by setting q̈ = 0 in (2) and summing up the three
equations (the elastic forces cancel each other). In this steady-state condition, the deformation of
the two springs can be computed again from the model as

δ12 = q1 − q2 =
1
k1

2ū
3
, δ23 = q2 − q3 =

1
k2

ū

3
,
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being in general δ12 6= δ23. Note also that the steady-state deformations are independent from the
actual values of the masses (these will influence instead the transient behavior).

We can prove that the control law (1) asymptotically stabilizes the unique closed-loop equilibrium
state q1 = q2 = q3 = qd, q̇ = 0, by using a simple Lyapunov/LaSalle argument. Define the
Lyapunov candidate as the total system energy E = T +U , plus the control energy in the form of
a virtual spring of stiffness kp > 0, with rest condition in q1 = qd:

V =
1
2
(
m1q̇

2
1 +m2q̇

2
2 +m3q̇

2
3

)
+

1
2
(
k1(q1 − q2)2 + k2(q2 − q3)2 + kp(qd − q1)2

)
.

Indeed V ≥ 0, whereas V = 0 if and only if the closed-loop system is at the desired equilibrium
state. Taking the time derivative of V , using (2), and simplifying terms leads to

V̇ = −d
(
q̇21 + q̇22 + q̇23

)
≤ 0.

The non-positivity of V̇ is thus guaranteed by the presence of viscous friction in the mass-ground
contact (otherwise, we could inject dissipation by just adding a damping term −kdq̇1, kd > 0, in
the control law). To complete the proof, we invoke LaSalle’s theorem. From V̇ = 0 ⇐⇒ q̇ = 0,
we determine the largest invariant set of states contained in V̇ = 0. When q̇ ≡ 0, from the third
equation in (2), q̈3 = 0 necessarily implies q3 = q2. Substituting backward in the second equation
under the same operative conditions yields necessarily q2 = q1. Finally, from the first equation

0 = m1q̈1 = kp(qd − q1)− k1(q1 − q2)− dq̇1 = kp(qd − q1) ⇒ q1 = qd,

and thus the configuration qe having q1 = q2 = q3 = qd with velocity q̇ = 0 is the only invariant
state for the closed-loop system. The result is thus proven. Since the system is linear, asymptotic
stability will be equivalent to exponential stability. For the same reason, one could have analyzed
the characteristic polynomial of the closed-loop linear system, using the Routh criterion to establish
stability. However, this would require longer computations in order to prove the same result.

∗ ∗ ∗ ∗ ∗
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