
Robotics II
September 12, 2016

Exercise 1
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Figure 1: A RPR planar robot moving in a vertical plane.

Derive the inertia matrix B(q) and the gravity vector g(q) in the dynamic model of the planar RPR
robot in Fig. 1, using the Lagrangian coordinates q =

(
q1 q2 q3

)T defined therein. Determine all
equilibrium configurations q0 under no external or dissipative forces/torques nor actuation inputs.

Exercise 2
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Figure 2: A two-mass system connected by a nonlinear spring, under the action of gravity.

In the mechanical system shown in Fig. 2, the first body (of mass b > 0 and position θ) is actuated
by a force u and is connected to the second body (of mass m > 0 and position q) through a
nonlinear spring having potential energy

Ue =
1
2
k(q − θ)2 +

1
4
kn(q − θ)4, k, kn > 0.

• Derive the dynamic model of this system by following a Lagrangian approach and using as
generalized coordinates (θ, q).

• Determine the (unique!) equilibrium position θ̄ for the first mass and the required constant
input force ū to be applied in order to keep the second mass at a desired position (height) q̄.

• Verify your result by computing the values of θ̄ and ū for the following numerical data:

q̄ = 0.1 [m], b = m = 3 [kg], k = 1000 [N/m], kn = 10000 [N/m3], g0 = 9.81 [m/s2].

[150 minutes; open books]
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Solution
September 12, 2016

Exercise 1

For link i, i = 1, 2, 3, let mi be its mass and Ii its inertia around an axis normal to the plane of
motion and passing through the center of mass. Moreover, for i = 1 and i = 3, di is the distance
of the center of mass of link i from the axis of joint i, while for the second link, d2 will denote the
(constant) distance of its center of mass from the axis of joint 3 —see Fig. 3.
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Figure 3: Parameters di defining the location of the center mass of the links of the RPR robot.

To derive the robot dynamic model terms, we follow a Lagrangian approach. For obtaining the
inertia matrix B(q), we compute the kinetic energy T = T1 +T2 +T3 of the three robot links. For
the first link, it is

T1 =
1
2

(I1 +m1d
2
1) q̇21 .

For the second link, the position of the center of mass is1

pc2 =
(
`1 cos q1 − (q2 − d2) sin q1
`1 sin q1 + (q2 − d2) cos q1

)
, (1)

where `1 is the length of link 1. Thus, the velocity of this center of mass is

vc2 = ṗc2 =
(
− (`1 sin q1 + (q2 − d2) cos q1) q̇1 − sin q1 q̇2
(`1 cos q1 − (q2 − d2) sin q1) q̇1 + cos q1 q̇2

)
and its squared norm is

‖vc2‖2 = vT
c2vc2 =

(
`21 + (q2 − d2)2

)
q̇21 + q̇22 + 2`1 q̇1q̇2.

The (scalar) angular velocity of link 2 is simply q̇1. As a result,

T2 =
1
2
[(
I2 +m2

(
`21 + (q2 − d2)2

))
q̇21 +m2 q̇

2
2 + 2m2`1 q̇1q̇2

]
.

1We take into account the following identities (for β = π/2): cos(q1 + π/2) = − sin q1, sin(q1 + π/2) = cos q1.
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Similarly, the position of the center of mass of the third link is

pc3 =
(
`1 cos q1 − q2 sin q1 − d3 sin(q1 + q3)
`1 sin q1 + q2 cos q1 + d3 cos(q1 + q3)

)
. (2)

Its velocity is

vc3 = ṗc3 =
(
− (`1 sin q1 + q2 cos q1) q̇1 − sin q1 q̇2 − d3 cos(q1 + q3)(q̇1 + q̇3)
(`1 cos q1 − q2 sin q1) q̇1 + cos q1 q̇2 − d3 sin(q1 + q3)(q̇1 + q̇3)

)
and the squared norm becomes

‖vc3‖2 =
(
`21 + q22

)
q̇21+q̇22+d2

3(q̇1+q̇3)2+2`1q̇1q̇2−2d3 sin q3(q̇1+q̇3)(`1q̇1+q̇2)+2d3q2 cos q3(q̇1+q̇3)q̇1.

The (scalar) angular velocity of link 3 is simply (q̇1 + q̇3). As a result,

T3 = 1
2

[(
I3 +m3d

2
3

)
(q̇1 + q̇3)2 +m3

(
`21 + q22

)
q̇21 +m3 q̇

2
2

+ 2m3`1 q̇1q̇2 + 2m3d3(q̇1 + q̇3) (q2 cos q3q̇1 − sin q3(`1q̇1 + q̇2))] .

Therefore,

T =
1
2
q̇T

 b11(q2, q3) b12(q3) b13(q2, q3)

b22 b23(q3)

symm b33

 q̇ =
1
2
q̇T B(q)q̇,

from which the elements bij of the 3× 3, symmetric, positive definite inertia matrix B(q) can be
extracted:

b11(q2, q3) = I1 +m1d
2
1 + I2 +m2d

2
2 + I3 +m3d

2
3 + (m2 +m3)`21

− 2m2d2q2 + (m2 +m3)q22 + 2m3d3 (q2 cos q3 − `1 sin q3)

= π1 + π2 q2 + π3 q
2
2 + 2π4 (q2 cos q3 − `1 sin q3)

b12(q3) = (m2 +m3)`1 −m3d3 sin q3 = π3 `1 − π4 sin q3

b13(q2, q3) = I3 +m3d
2
3 +m3d3 (q2 cos q3 − `1 sin q3) = π5 + π4 (q2 cos q3 − `1 sin q3)

b22 = m2 +m3 = π3

b23(q3) = −m3d3 sin q3 = −π4 sin q3

b33 = I3 +m3d
2
3 = π5.

(3)

In the expressions (3) of the elements of B(q), we have assumed that the kinematic parameter
`1 is known and found thus a linear parameterization in terms of five dynamic coefficients πi,
i = 1, . . . , 5.

For obtaining the vector g(q), we compute the potential energy U = U1 + U2 + U3 due to gravity
for the three robot links. Using the expressions of the y-component of the vectors pci, i = 1, 2, 3
(see also eqs. (1) and (2)), we have

U1(q1) = m1g0 pc1,y = m1g0 d1 sin q1

U2(q1, q2) = m2g0 pc2,y = m2g0 (`1 sin q1 + (q2 − d2) cos q1)

U3(q1, q2, q3) = m3g0 pc3,y = m3g0 (`1 sin q1 + q2 cos q1 + d3 cos(q1 + q3)) .

3



Therefore,

g(q) =
(
∂U(q)
∂q

)T

=

 (m1d1 + (m2 +m3)`1) g0 cos q1 − (m2(q2 − d2) +m3q2) g0 sin q1 −m3d3g0 sin(q1 + q3)

(m2 +m3)g0 cos q1
−m3d3g0 sin(q1 + q3)

 .

(4)
Solving for g(q0) = 0 provides all equilibrium configurations q0. From the second component
in (4), it follows that q0,1 = ±π/2, which confirms also the intuition that the prismatic joint
axis should be horizontal at the equilibrium. Plugging this into the third equation leads again
to q0,3 = ±π/2. Imposing these two conditions in the first equation, g1(q0) = 0 provided the
additional condition q2 = m2d2/(m2 +m3). Thus, all unforced equilibrium configurations for this
RPR robot are of the form

q0 =
(
±π

2
m2 d2

m2 +m3
±π

2

)T

.

Exercise 2

The kinetic and potential energies of the mechanical system in Fig. 2 are given by

T =
1
2
b θ̇2 +

1
2
m q̇2, U = Ue + Ug =

1
2
k(q − θ)2 +

1
4
kn(q − θ)4 −mg0q.

Thus, applying the Euler-Lagrange equations to L = T −U yields the two second-order differential
equations

bθ̈ + k(θ − q) + kn(θ − q)3 = u (5)
mq̈ −mg0 + k(q − θ) + kn(q − θ)3 = 0, (6)

which are nonlinear due to the cubic terms in the deformation δ = q − θ of the spring.

For the equilibrium conditions, we set θ̈ = q̈ = 0 in eqs. (5)–(6). From the second one, we obtain
the following algebraic equation:

kn(q − θ)3 + k(q − θ)−mg0 = 0.

This is a cubic equation of the form

δ3 + pδ + r = 0, with p =
k

kn
, r = −mg0

kn
, (7)

which is known to have the single real solution2

δ =
3

√
−r

2
+

√
r2

4
+
p3

27
+

3

√
−r

2
−
√
r2

4
+
p3

27
. (8)

2The (depressed) cubic equation in (7) was studied already in the XVI century. The formula (8) is attributed to
the mathematician Gerolamo Cardano, but in fact is due to Scipione del Ferro and Niccolò Fontana (also known as
Tartaglia).
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Therefore, for a given desired position q = q̄ of the mass m, we compute from (8) the spring
deformation δ̄ at steady state and set

θ̄ = q̄ − δ̄. (9)

Moreover, from eq. (5) at steady state we obtain the required input force

ū = k(θ̄ − q̄) + kn(θ̄ − q̄)3 = kδ̄ + knδ̄
3 = −mg0. (10)

The input force balances the weight of the mass m, as reflected through the elastic force τe of the
deformed spring. Note that that the mass b plays no role in this analysis.

Using now the given numerical data, and in particular q̄ = 0.1, k = 1000, kn = 10000 and m = 3,
we compute

δ = 0.0292, θ̄ = 0.0708, ū = −29.4300. (11)

As a result, the static deformation of the nonlinear spring at the equilibrium is equal to slightly
less than 3 cm. The deformation-force characteristics τe = kδ+ knδ

3 of the chosen spring is shown
in Fig. 4, where we have indicated also the actual deformation δ̄ at equilibrium. In correspondence
to this value, we can easily check that the elastic force is τe = −ū.
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Figure 4: The nonlinear deformation-force characteristics of the spring for k = 103 [N/m] and
kn = 104 [N/m3]. The equilibrium condition for the given problem data is reported in red.

∗ ∗ ∗ ∗ ∗

5


