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Exercise 1
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Figure 1: A 2R planar robot moving on a horizontal plane.

Derive the inertia matrix B(q) of a planar 2R robot using the absolute coordinates q = (q1, q2)
defined in Fig. 1. Will Coriolis and/or centrifugal terms be present in the quadratic velocity term
c(q, q̇) of the dynamic model? Why? In the absence of dissipative effects, what is the relation
between the input torques u acting in this case on the right-hand side of the Euler-Lagrange
equations and the torques uθ = (uθ1, uθ2) produced by two motors, one for each joint, directly
connected to the respective joint axes?

Exercise 2

Figure 2: A peg with a square section entering a hole with little or no clearance.

For the task of inserting a peg with a square section into a square hole, as depicted in Fig. 2,
define i) a suitable task frame, ii) the natural constraints imposed by the geometry of the rigid
and frictionless environment on the generalized (i.e., linear and angular) motion/force quantities
expressed in this task frame, and iii) the virtual constraints that can be taken as reference values
by a hybrid force-velocity control law for the smooth execution of the task.
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Exercise 3

For the peg-in-hole task considered in Exercise 2, consider the problem of regulating the contact
force in one direction against a side of the hole. The hole has now a compliant behavior, as modeled
by a spring of stiffness ke > 0. With reference to Fig. 3, which displays a horizontal section of the
peg in contact with one side of the hole, let m > 0 be the mass of the peg and d > 0 the position
of the undeformed contact along the tx direction.

tx u 
m 

d 

ke 0 

Figure 3: Interaction with a compliant environment at one side of the peg-in-hole of Fig 2.

Design two controllers for the scalar command u such that the contact force Fc is regulated to a
desired value Fd > 0, with an asymptotically stable transient behavior. In particular:

• suppose first that no force sensing is available and design a compliance control law;

• introduce an ideal force sensor (e.g., on the peg surface) and design a force control law;

• discuss robustness of the two designs w.r.t. uncertainties in the knowledge of ke, d and m.

[210 minutes; open books]
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Solution
July 11, 2016

Exercise 1

To obtain the robot dynamic model terms, we follow a Lagrangian approach. Since the robot
motion occurs at constant potential energy (on a horizontal plane), we need only to compute the
kinetic energy T = T1 + T2. For link i, i = 1, 2, let mi be its mass, di the distance of its center of
mass from the axis of joint i, and Ii the baricentral inertia of the link around an axis normal to
the plane of motion. For the first link, it is

T1 =
1
2

(I1 +m1d
2
1) q̇21 .

For the second link, the position of the center of mass when using the absolute coordinates is

pc2 =
(
`1 cos q1 + d2 cos q2
`1 sin q1 + d2 sin q2

)
,

where `1 is the length of link 1. Thus, its velocity is

vc2 = ṗc2 =
(
−`1 sin q1 q̇1 − d2 sin q2 q̇2
`1 cos q1 q̇1 + d2 cos q2 q̇2

)
,

and its squared norm becomes

‖vc2‖2 = vTc2vc2 = `21q̇
2
1 + d2

2q̇
2
2 + 2`1d2 cos(q2 − q1) q̇1q̇2.

The (scalar) angular velocity of link 2 is simply q̇2. As a result,

T2 =
1
2
(
m2`

2
1q̇

2
1 +

(
I2 +m2d

2
2

)
q̇22 + 2m2`1d2 cos(q2 − q1) q̇1q̇2

)
.

Therefore,

T =
1
2
q̇T

(
I1 +m1d

2
1 +m2`

2
1 m2`1d2 cos(q2 − q1)

m2`1d2 cos(q2 − q1) I2 +m2d
2
2

)
q̇ =

1
2
q̇TB(q)q̇.

Defining for compactness the following dynamic coefficients

a1 = I1 +m1d
2
1 +m2`

2
1, a2 = I2 +m2d

2
2, a3 = m2`1d2,

we can rewrite the inertia matrix as

B(q) =

(
a1 a3 cos(q2 − q1)

a3 cos(q2 − q1) a2

)
.

For the (quadratic) velocity terms in the dynamic model, we have

c(q, q̇) =
(
c1(q, q̇)
c2(q, q̇)

)
, ci(q, q̇) = q̇TCi(q)q̇, i = 1, 2,
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where

Ci(q) =
1
2

{
∂bi(q)
∂q

+
(
∂bi(q)
∂q

)T
− ∂B(q)

∂qi

}
, i = 1, 2.

Computing

C1(q) =
1
2

{(
0 0

a3 sin(q2 − q1) −a3 sin(q2 − q1)

)
+

(
0 a3 sin(q2 − q1)

0 −a3 sin(q2 − q1)

)

−

(
0 a3 sin(q2 − q1)

a3 sin(q2 − q1) 0

)}
=

(
0 0

0 −a3 sin(q2 − q1)

)
,

C2(q) = · · · =

(
a3 sin(q2 − q1) 0

0 0

)
,

we finally obtain

c(q, q̇) =
(
−a3 sin(q2 − q1) q̇22
a3 sin(q2 − q1) q̇21

)
.

There are no Coriolis, but only centrifugal terms in the dynamic equations. This is due to the
choice of absolute coordinates, so that a motion of q1 only, with q2 kept constant, will not change
the orientation of link 2.

Moreover, the transformation from relative joint coordinates θ (those of a classical DH convention)
to absolute joint coordinates q is

q =
(
q1

q2

)
=
(

θ1

θ1 + θ2

)
⇒ q̇ =

(
1 0
1 1

)
θ̇ = T θ̇.

Therefore, due to the principle of virtual works, the mapping between the generalized forces u
performing work on q̇ and the generalized forces uθ performing work on θ̇ is given by

uθ =
(
uθ1

uθ2

)
= T Tu =

(
u1 + u2

u2

)
⇔ u =

(
u1

u2

)
= T−Tuθ =

(
uθ1 − uθ2

uθ2

)
.

The robot dynamic model written in the q coordinates and driven by the motor torques uθ is

B(q)q̈ + c(q, q̇) = u = T−Tuθ.

Exercise 2

With reference to the task frame shown in Fig. 4, the natural (geometric) contraints and the virtual
constraints in the peg-hole frictionless interaction are respectively

natural:



tvx = 0
tvy = 0
tωx = 0
tωy = 0
tωz = 0
tFz = 0

virtual:



tFx = Fxd
tFy = Fyd
tMx = Mxd

tMy = Myd

tMz = Mzd

tvz = vzd > 0.
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Figure 4: The task frame used in the definition of natural and virtual constraints for hybrid
force/motion analysis and control.

Except for the last virtual constraint, which specifies the desired positive speed of insertion of the
peg in the hole, all the desired interaction forces and moments can be set to zero, if a smooth
behavior is to be realized with minimum mechanical stress on the peg. On the other hand, if
a firm contact needs to be maintained with one side of the hole (e.g., in the presence of some
uncertain clearance), then the choice of a positive value for Fxd and/or Fyd would be useful (this
is the situation considered, e.g., in Exercise 3).

Exercise 3

Let x be the position along tx of the peg side that undergoes contact with the hole side. We assume
that the peg is already in contact (x ≥ d). The dynamic model of the peg-environment interaction
is then

mẍ+ ke(x− d) = u,

whereas the contact force applied by the peg to the hole side is

Fc = ke(x− d), for x ≥ d

Instead, when x < d (no contact) then Fc = 0.

If we want to have Fc = Fd at the closed-loop equilibrium, we need to drive the mass m to a
position xd computed as follows:

Fc = ke (x− d)|x=xd
= Fd ⇒ xd = d+

1
ke
Fd. (1)

However, a simple compliance control law of the PD type

u = kp(xd − x)− kdẋ, with kp > 0 and kd > 0, (2)

will have a closed-loop equilibrium x = xE that does not provide the desired contact force Fd at
steady state. In fact, the unique equilibrium xE(> d) will be the solution of

ke(x− d)|x=xE
= kp(xd − x)|x=xE

⇒ xE =
ked+ kpxd
ke + kp

= d+
kp

ke(ke + kp)
Fd 6= xd,
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where (1) has been used. Accordingly, the steady-state contact force is

FE = ke(xE − d) =
kp

ke + kp
Fd,

which is never equal to the desired one, even for arbitrary large but finite values of kp.

A better control design is achieved by adding to the law (2) a term that nominally cancels the
interaction force, i.e.,

u = kp(xd − x)− kdẋ+ ke(x− d), with kp > 0 and kd > 0. (3)

When in contact, the associated closed-loop equation is

mẍ+ kdẋ+ kpx = kpxd,

which is an asymptotically stable system driven by the constant signal kpxd, converging at steady
state to the desired position x = xd, thus with Fc = Fd.

Unfortunately, an uncertain value of the environment stiffness (which appears twice in the control
law, namely in the definition of xd in (1) and in the term compensating the interaction force in (3))
would lead to a residual force error at steady state. In practice, we can implement only

u = kp(x̂d − x)− kdẋ+ k̂e(x− d), with kp > 0 and kd > 0. (4)

where k̂e is an estimate of ke and x̂d = d+(Fd/k̂e). For the time being, assume that d is accurately
known, so that the last term in (4) is present only when x ≥ d (otherwise is zero). When in contact,
the closed-loop equation becomes

mẍ+ kdẋ+
(
kp + ke − k̂e

)
x = kpx̂d +

(
ke − k̂e

)
d =

(
kp + ke − k̂e

)
d+

kp

k̂e
Fd. (5)

Provided that the proportional gain kp in the control law (4) is sufficiently large, i.e.,

kp ≥ α >
∣∣∣ke − k̂e∣∣∣ ≥ 0, (6)

it is easy to see that system (5) will remain asymptotically stable. Its position and contact force
converge respectively to

xE = d+
kp

k̂e

(
kp + ke − k̂e

) Fd and FE =
(
ke

k̂e

)(
kp

kp + ke − k̂e

)
Fd 6= Fd.

The last formula shows that by increasing kp → ∞ (i.e., to very large values), one can certainly
neglect the effect of the estimation error ke − k̂e, but still not the error due to the scaling factor
ke/k̂e 6= 1.

The analysis of the case when the position d of the environment is not accurately known is more
complex. Again, the estimate d̂ enters twice in place of d within the control law (4), explicitly in
the last term and implicitly through the definition of xd. Not having an accurate estimate of d
may lead to a wrong activation/deactivation of the term k̂e(x− d̂), possibly in an inconsistent way
with respect to the true contact/no contact situation. A chattering behavior may thus result in
the proximity of the contact point. While a more detailed analysis of such a situation is possible,
this is out of our scope here.
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On the other hand, the above control laws are fully independent from the knowledge of the mass
value m, which only affects the behavior of the system during transient phases.

Let us turn the attention to the case when a force sensor is available, whose measure Fm ideally
provides the contact force, or

Fm = Fc =
{
ke(x− d), x ≥ d,
0, x < d.

Then, we can implement a force control law of the form

u = Fd + kf (Fd − Fm)− kdẋ, with kf > 0 and kd > 0. (7)

with a constant feedforward, a term proportional to the force error, and a velocity damping term
(as before). When in contact, the resulting closed-loop equation is

mẍ+ kdẋ+ (1 + kf ) ke(x− d) = (1 + kf )Fd. (8)

Equation (8) represents again an asymptotically stable system, whose position and contact force
converge to their desired values, i.e.,

xE = xd = d+
1
ke
Fd and FE = Fd.

Note that the same control law (7) can be applied also during a phase of no contact (when Fm = 0).
In that case, the closed-loop equation takes the form

mẍ+ kdẋ = (1 + kf )Fd,

and the (approaching) velocity of the peg will converge to the constant value

ẋE =
1 + kf
kd

Fd > 0,

and proceed in this way until contact is established.

An alternative to the addition of the constant force feedforward Fd in (7) is the use of a PI control
law on the force error ef = Fd − Fm (with Fm = Fc), still complemented by a velocity damping
term, i.e.,

u(t) = kf (Fd−Fm(t))+ki
∫ t

0

(Fd−Fm(τ))dτ−kdẋ(t), with kd > 0, ki > 0, and (at least) kf > 0.

(9)
It can be shown that the control scheme obtained by using (9) is equivalent to closing in a unitary
feedback loop the transfer function

G(s) =
Fm(s)
ef (s)

=
ke (kfs+ ki)

s (ms2 + kds+ ke)
, (10)

yielding the closed-loop system W (s) = Fm(s)/Fd(s) = G(s)/(1 + G(s)). The denominator of
W (s) is

den W (s) = ms3 + kds
2 + (1 + kf )kes+ kike

and, by the Routh criterion, its roots are all in the open left-hand side of the complex plane if and
only if

kd > 0, ki > 0, kf > m
ki
kd
− 1.
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Under these conditions, the closed-loop system is asymptotically stable and the force error ef will
converge to zero.

As a matter of fact, both force control laws (7) and (9) achieve always their target, without the
need to know any of the parameters ke, m, or d. The cost of including a force sensor is paid back
by the achieved robustness of the control laws that can be designed with the force measurements.

∗ ∗ ∗ ∗ ∗
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