
Robotics II
June 6, 2016

Exercise 1
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Figure 1: A 2R polar robot

Derive the dynamic model of a 2R polar robot moving in the presence of gravity, using the gener-
alized coordinates q = (q1, q2) defined in Fig. 1. Assume that the links have cylindric form (as in
the picture) and uniformly distributed mass.

Provide for this robot the explicit expression of the terms of an adaptive control law that guarantees
asymptotic tracking of a desired smooth joint trajectory qd(t), without any a priori knowledge
about the robot dynamic parameters. Which is the minimum dimension of such an adaptive
controller?

Exercise 2

For the robot in Fig. 1, write down all different symbolic expressions of control laws that you are
aware of, which guarantee regulation to a desired (generic) constant configuration qd. Specify for
each law the design conditions for success and the type of convergence/stability achieved.

[180 minutes; open books]
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Solution
June 6, 2016

Exercise 1

The definition of the joint variables q1 and q2 follows the Denavit-Hartenberg convention. We show
in Fig. 2 the two DH frames attached to the two moving links (and indexed with 1 and 2), which
will be used for defining conveniently their inertial parameters. The rotation matrices between
frames 0 and 1 and between frames 1 and 2 are found easily by inspection (without the need of
explicitly defining a DH table of parameters) as

0R1(q1) =

 cos q1 0 sin q1

sin q1 0 − cos q1

0 1 0

 , 1R2(q2) =

 cos q2 − sin q2 0
sin q2 cos q2 0

0 0 1

 .

Since the cylindric links have uniform mass, their center of mass will lie along the y1-axis for link
1 and along the x2-axis for link 2. We denote with d2 > 0 the distance of the center of mass of
link 2 from the axis of joint 1 (slightly more than half of the link length). The inertia matrix of
each link is diagonal when referred to the kinematic reference frame attached to the link, as well
as when referred to the frame with origin in the center of mass and having the same orientation.
We denote the link inertia matrices in the latter case as

iIi =

 Iix

Iiy

Iiz

, i = 1, 2.
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Figure 2: The reference frames used for defining link inertial parameters of the 2R polar robot

We start by computing the various terms in the robot dynamic model, following a Lagrangian
approach.

The kinetic energy of the robot is T = T1 + T2. For the first link,

T1 =
1
2

I1y q̇2
1 .

For the second link, the position of its center of mass is

pc2 =

 d2 cos q2 cos q1

d2 cos q2 sin q1

`1 + d2 sin q2

 ,
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where `1 is the length of link 1 (an irrelevant kinematic parameter for what follows). Thus, its
velocity is

vc2 = ṗc2 =

 −d2 cos q2 sin q1 q̇1 − d2 cos q1 sin q2 q̇2

d2 cos q2 cos q1 q̇1 − d2 sin q1 sin q2 q̇2

d2 cos q2 q̇2

 ,

and its squared norm simplifies to

‖vc2‖2 = vT
c2vc2 = d2

2

(
q̇2
2 + cos2q2 q̇2

1

)
.

The angular velocity of link 2, when expressed in frame 0, is computed as1

0ω2 = 0z0 q̇1 + 0z1 q̇2 =

 0
0
1

 q̇1 +

 sin q1

− cos q1

0

 q̇2.

In order to use the constant diagonal inertia matrix of link 2, we need to express the angular
velocity in frame 2. Since

1z0 = 0RT
1 (q1) 0z0 =

 0
1
0

 , 2z0 = 1RT
2 (q1) 1z0 =

 sin q2

cos q2

0


and

1z1 =

 0
0
1

 , 2z1 = 1RT
2 (q1) 1z1 =

 0
0
1

 ,

we have

2ω2 = 2z0 q̇1 + 2z1 q̇2 =

 sin q2 q̇1

cos q2 q̇1

q̇2

 .

As a result,

T2 =
1
2

m2 vT
c2vc2 +

1
2

2ωT
2

2I2
2ω2 =

1
2
(
I2x sin2q2 +

(
I2y + m2d

2
2

)
cos2q2

)
q̇2
1 +

(
I2z + m2d

2
2

)
q̇2
2 .

We note that in general I2x 6= I2y, whereas it is I2y = I2z, due to the cylindric form and uniform
mass distribution of the links. Therefore,

T = T1 + T2 =
1
2
q̇T

(
I1y + I2x sin2q2 +

(
I2y + m2d

2
2

)
cos2q2 0

0 I2z + m2d
2
2

)
q̇ =

1
2
q̇T B(q)q̇.

Using the following definition of dynamic coefficients

a′1 = I1y, a′2 = I2x, a′3 = I2y + m2d
2
2 = I2z + m2d

2
2,

we can write the inertia matrix as

B(q) =
(

a′1 + a′2 sin2q2 + a′3 cos2q2 0
0 a′3

)
.

1We use here the expression for revolute joints of the columns of the angular part of the geometric Jacobian.
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Although there will be no reduction in the number of dynamic coefficients, it is slightly more
convenient to use the trigonometric identity cos2q2 = 1− sin2q2 and obtain

B(q) =
(

a1 + a2 sin2q2 0
0 a3

)
=
(

b1(q2) b2

)
,

with
a1 = (a′1 + a′3 =) I1y + I2y + m2d

2
2

a2 = (a′2 − a′3 =) I2x − I2y −m2d
2
2

a3 = (a′3 =) I2y + m2d
2
2 = I2z + m2d

2
2.

For the Coriolis and centrifugal terms, we have

c(q, q̇) =
(

c1(q, q̇)
c2(q, q̇)

)
= S(q, q̇)q̇, ci(q, q̇) = q̇T Ci(q)q̇, i = 1, 2, S(q, q̇) =

(
q̇T C1(q)
q̇T C2(q)

)
,

where

Ci(q) =
1
2

{
∂bi(q)

∂q
+
(

∂bi(q)
∂q

)T

− ∂B(q)
∂qi

}
, i = 1, 2.

Note that with the above definition based on Christoffel symbols, the factorization matrix S
satisfies automatically the property of skew-symmetry for Ḃ − 2S.

Computing

C1(q) =
1
2

{(
0 2a2 sin q2 cos q2

0 0

)
+
(

0 0
2a2 sin q2 cos q2 0

)
− 0

}

=
(

0 a2 sin q2 cos q2

a2 sin q2 cos q2 0

)

C2(q) = · · · =
(
−a2 sin q2 cos q2 0

0 0

)
,

we have

c(q, q̇) =
(

2a2 sin q2 cos q2 q̇1q̇2

−a2 sin q2 cos q2 q̇2
1

)
and S(q, q̇) = a2 sin q2 cos q2

(
q̇2 q̇1

−q̇1 0

)
.

The potential energy of the robot is given by

U = U1 + U2, Ui = −mig
T
0 r0,ci , i = 1, 2.

Since
gT

0 =
(

0 0 −g0

)
, g0 = 9.81 [m/s2]

and the potential energy U1 is constant, we only need the z-component of the position vector r0,c2

of the center of mass of link 2. We have

U1 = cost, U2 = m2g0d2 sin q2 = a4 sin q2,

where we have introduced a fourth, and last, dynamic coefficient a4 = m2g0d2. Therefore,

g(q) =
(

∂U(q)
∂q

)T

=
(

0
a4 cos q2

)
.
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The dynamic model of the robot can thus be written in its linear parametrized form,

B(q)q̈ + S(q, q̇)q̇ + g(q) = Y (q, q̇, q̈)a = u,

with

Y (q, q̇, q̈) =
(

q̈1 sin2q2 q̈1 + 2 sin q2 cos q2 q̇1q̇2 0 0
0 − sin q2 cos q2 q̇2

1 q̈2 cos q2

)
, a =


a1

a2

a3

a4

 .

Defining q̇r = q̇d + Λe = q̇d + Λ(qd − q), with a diagonal matrix Λ > 0, two diagonal gain
matrices KD > 0 and KP = KDΛ−1 > 0, and a diagonal estimation gain matrix Γ > 0, the
adaptive controller will have dimension 4 (equal to the minimum number of dynamic coefficients
to be estimated in this robot) and the expression

u = B̂(q)q̈r + Ŝ(q, q̇)q̇r + ĝ(q) + KP e + KDė = Y (q, q̇, q̇r, q̈r)â + KP e + KDė

˙̂a = Γ Y T (q, q̇, q̇r, q̈r) (q̇r − q̇) , â(0) = arbitrary,

where

Y (q, q̇, q̇r, q̈r) =
(

q̈r1 sin2q2 q̈r1 + sin q2 cos q2 (q̇1q̇r2 + q̇r1q̇2) 0 0
0 − sin q2 cos q2 q̇1q̇r1 q̈r2 cos q2

)
, â =


â1

â2

â3

â4

 .

∗ ∗ ∗ ∗ ∗
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