
Robotics II
October 27, 2014

Exercise 1

The collision detection and isolation method based on the use of residuals that monitor the robot
generalized momentum has been presented only for open chain manipulators with revolute joints.
Consider the planar PRR robot in Fig. 1, moving on a horizontal plane. Assuming that the robot
at rest at time t = 0, provide the explicit expressions of the contributions to the residual vector
r ∈ R3 in terms of the robot dynamic model components1. Comment on analogies or differences
that may result due to the presence of prismatic joints in the chain, only one in the present case,
or one or more in the general case.
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Figure 1: A planar PRR robot that may undergo collisions at any point along its structure (only
non-simultaneous collision forces FK in the plane of motion are considered)

Exercise 2

For the same robot of the previous exercise, assume that second and third links have unitary
lengths. Moreover, the force (for joint 1) and torques (for joints 2 and 3) that can be delivered by
the actuators at the joints are bounded as follows:

|τ1| ≤ 5 [N], |τ2| ≤ 1 [Nm], |τ3| ≤ 2 [Nm].

The robot should be able to sustain in static conditions contact forces F that are applied to its
end-effector in various planar directions. Determine the maximum norm of a contact force that
can be applied in any planar direction and sustained by the robot when kept always in a fixed
configuration. Provide at least one non-singular configuration in which the robot achieves this
optimal result.

[180 minutes; open books]

1For dynamic analysis, you may use whatever generalized coordinates you find most convenient.
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Solution
October 27, 2014

Exercise 1

When considering the Lagrangian dynamics of a robot with q ∈ Rn that is possibly subject to
collision forces, we have

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ + τK , τK = JTK(q)FK ,

where the left-hand side of the dynamic equation contains the usual inertia terms, Coriolis and
centrifugal terms (with a factorization such that Ṁ−2C is a skew-symmetric matrix), and gravity
terms, while the non-conservative terms on the right-hand side are the motor torque τ and the
joint torque τK ∈ Rn resulting from a collision/contact on the robot structure (i.e., on one of the
links). Moreover, FK ∈ Rm is the generalized force at the contact and JTK(q) is the transpose of
the Jacobian of the contact point. Both these quantities are unknown.

To detect the presence of a joint torque τK due to a collision, we use a residual vector based
on the robot generalized momentum p = M(q)q̇. With the robot starting at rest at time t = 0,
the residual r ∈ Rn is defined as

r = KI

[
p−

∫ t

0

(τ +CT (q, q̇)q̇ − g(q) + r)ds
]
, r(0) = 0,

with KI > 0 and diagonal. Therefore, for its computation we need the inertia matrix M(q),
the factorization matrix C(q, q̇) of the Coriolis and centrifugal terms (obtained using Christoffel’s
coefficients), and the gravity vector g(q) of the specific robot.
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Figure 2: The definition of generalized coordinates and dynamic parameters for the planar PRR
robot (the link length are l2 and l3)

We define the reference frame axes and the generalized coordinates q ∈ R3 for the planar PRR
robot as in Fig. 2 —note that these do not follow the DH convention. Since the robot is moving
on a horizontal plane, g(q) ≡ 0.

The kinetic energy of the robot

T =
3∑
i=1

Ti =
3∑
i=1

1
2
[
mi‖vci

‖2 + ωTi Iiωi
]

=
1
2
q̇TM(q)q̇
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is computed as follows2:

T1 =
1
2
m1q̇

2
1

pc2 =

(
q1 + dc1 + dc2c2

dc2s2

)
⇒ vc2 =

(
q̇1 − dc2s2q̇2
dc2c2q̇2

)

⇒ T2 =
1
2
m2

(
q̇21 + d2

c2q̇
2
2 − 2dc2s2q̇1q̇2

)
+

1
2
I2q̇

2
2

pc3 =

(
q1 + dc1 + l2c2 + dc3c23

l2s2 + dc3s23

)
⇒ vc3 =

(
q̇1 − l2s2q̇2 − dc3s23 (q̇2 + q̇3)
l2c2q̇2 + dc3c23 (q̇2 + q̇3)

)
⇒ T3 = 1

2m3

(
q̇21 + l22 q̇

2
2 + d2

c3 (q̇2 + q̇3)2 − 2l2s2q̇1q̇2 − 2dc3s23q̇1 (q̇2 + q̇3) + 2l2dc3c23q̇2 (q̇2 + q̇3)
)

+ 1
2I3 (q̇2 + q̇3)2 .

As a result, the inertia matrix is

M(q) =

 m1 +m2 +m3 − (m2dc2 +m3l2) s2 −m3dc3s23 −m3dc3s23

symm I2 +m2d
2
c2 + I3 +m3d

2
c3 +m3l

2
2 + 2l2m3dc3c3 I3 +m3d

2
c3 + l2m3dc3c3

symm symm I3 +m3d
2
c3

 .

Using the following parametrization3

a1 = m1 +m2 +m3

a2 = m2dc2 +m3l2

a3 = m3dc3

a4 = I2 +m2d
2
c2 + I3 +m3d

2
c3 +m3l

2
2

a5 = I3 +m3d
2
c3,

the inertia matrix can be more compactly rewritten as

M(q) =

 a1 −a2s2 − a3s23 −a3s23

−a2s2 − a3s23 a4 + 2l2a3c3 a5 + l2a3c3

−a3s23 a5 + l2a3c3 a5

 =
(
m1(q) m2(q) m3(q)

)
.

For the term CT (q, q̇)q̇, we use the formula

C(q, q̇) =

 q̇TC1(q)

q̇TC2(q)

q̇TC3(q)

 ⇒ CT (q, q̇)q̇ =
(
CT

1 (q)q̇ CT
2 (q)q̇ CT

3 (q)q̇
) q̇1

q̇2

q̇3

 ,

with matrices Ci(q) defined as

Ci(q) =
1
2

[(
∂mi(q)
∂q

)
+
(
∂mi(q)
∂q

)T
−
(
∂M(q)
∂qi

)]
, for i = 1, 2, 3.

2Taking into account the planar nature of the problem, we work with two-dimensional vectors for linear quantities
(in the plane (x0, y0)) and with scalars for angular quantities (components along z0).

3Here, the kinematic parameter l2 is assumed to be known. This allows writing the product m3l2dc3 as a3l2,
without the need of introducing a sixth dynamic coefficient.
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Performing computations yields finally

C1(q) =

 0 0 0
0 − (a2c2 + a3c23) −a3c23

0 −a3c23 −a3c23

 ,

C2(q) =

 0 0 0
0 0 −l2a3s3

0 −l2a3s3 −l2a3s3

 ,

C3(q) =

 0 0 0
0 −l2a3s3 0
0 0 0

 .

The presence of prismatic joints in the robot does not change the overall residual approach
to collision detection. Indeed, there are slight changes in the detectability of contact forces. For
instance, a force FK applied to the first link of the PRR robot along a direction that is normal to
the first joint axis will not be detected. For a robot with a first revolute joint, a force applied to
the first link along a line crossing the first joint axis would not be detected. In both cases, note
that such forces produce no motion anyway. When a prismatic joint is placed along the structure,
as in a planar RPR robot, the same reasoning applies, although detectability becomes in any event
easier, thanks to the role of the multiple joints preceding the link being hit.

In general, contact forces FK ∈ N
{
JTK(q)

}
will never be recorded by the residual r. In a

dual fashion, the residual method will fully detect contact forces that are completely orthogonal
to the null space of the contact Jacobian, no matter which is the prismatic or revolute nature of
the robot joints.

Exercise 2

We use the same coordinates as in Exercise 1. From the direct kinematics

p = f(q) =

(
q1 + l2c2 + l3c23

l2s2 + l3s23

)
,

the end-effector Jacobian of interest is

J(q) =
∂f(q)
∂q

=

(
1 − (l2s2 + l3s23) −l3s23
0 l2c2 + l3c23 l3c23

)
.

Note that the Jacobian is singular (loses rank) when c23 = c2 = 0, namely when the second
and third links lie both (folded or stretched) along a line orthogonal to the first (prismatic) joint
axis. In singular configurations, there are Cartesian directions along which arbitrary forces can
be applied without the need of motor torques to keep the structure in static balance. While such
configurations are indeed good candidates for the solution of the problem at hand, we should
also take into account that even in singular configurations contact forces could be applied along
arbitrary planar directions, and thus too large forces in norm may not be sustainable in view of
the given actuator limits.
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A generic contact force can be parametrized as

F =

(
Fx

Fy

)
= ‖F ‖

(
cosα
sinα

)
, α ∈ (−π.π] , (1)

where α is the angle of the force w.r.t. the x0 axis. For a given robot configuration q and a given
value of ‖F ‖, we should check if the actuator limits are still satisfied or not in correspondence to
the ‘worst case’ angle α.

Setting then l2 = l3 = 1 [m], and using the given actuator bounds, the following inequalities
need to be satisfied −5

−1
−2

 ≤ JT (q)F =

 Fx

− (s2 + s23)Fx + (c2 + c23)Fy
−s23Fx + c23Fy

 ≤
 5

1
2

 .

Or, using also eq. (1),  |Fx|
‖F‖ · |s2−α + s23−α|
‖F‖ · |s23−α|

 ≤
 5

1
2

 . (2)

This form is more convenient for analysis. From the first inequality in (2), the norm of F should
certainly not exceed 5 N. From the last inequality, no matter which value takes the sum q2 + q3,
we can always select a direction (i.e., a suitable value of α) such that |s23−α| = 1, yielding then
the worst case. Thus, the norm of F cannot exceed 2 N (which dominates the former condition).
Finally, consider the second inequality. If we had a limit on the second torque larger than or
equal to 4 Nm, since |s2−α + s23−α| ≤ 2 holds for any combination of q2, q3 and α, then this
bound would anyway be dominated by the stricter condition on the third torque. Instead, with a
maximum value of 1 Nm, we still need to carry the analysis a bit further.

It is easy to see that c3 = −1 (namely, q3 = ±π) implies s2−α + s23−α ≡ 0, and so any
force can be sustained by the actuator at joint 2 when folding the third link over the second, and
independently of the value of q2. This should not come unexpected, as the application line of any
force applied to the end-effector would then always cross the axis of joint 2, producing thus no
torque. Note that things would be quite different in the case l2 6= l3.

Summarizing, the maximum sustainable contact force applied at the robot end-effector has
norm ‖F ‖ = 2 N. A non-singular configuration where such a force can be sustained (with at least
one torque in saturation) is given by q∗ = (any, 3π/4,−π) —q1 is irrelevant. When applying a
force of 2 N in the direction normal to link 3 (α = π/4), we would have as balancing joint torque

τ ∗ = −JT (q∗)F = −

 1 0
0 0
√

2/2
√

2/2

( √2
√

2

)
=

 −
√

2
0
−2

 .

Note that the Jacobian matrix at q∗ has full rank, so this is not a singular configuration.

∗ ∗ ∗ ∗ ∗
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