
Robotics II
February 6, 2013

The end-effector of the RP robot in Fig. 1 is constrained to move on the Cartesian line x = k,
with k > 0.
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Figure 1: A RP robot moving on a horizontal plane with its end-effector constrained on a line

• Derive the expression of the reduced robot dynamics (in this case, a single first-order dif-
ferential equation), written in terms of pseudoacceleration and automatically satisfying the
constraint. Try to provide global validity to this model.

• Design a control law that regulates to constant desired values vd and λd, respectively the
tangent velocity and the normal force to the end-effector constraint.

[120 minutes; open books]
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Solution
February 6, 2013

Following the Lagrangian approach for a robot with N , with multipliers λ used to weigh the M -
dimensional holonomic constraints h(q) = 0, the dynamic equations (in the absence of gravity)
take the form

B(q)q̈ + c(q, q̇) = u+AT(q)λ s.t. h(q) = 0, (1)

with A(q) = ∂h(q)/∂q.

The reduced dynamic model is obtained by restricting the motion to a R-dimensional configu-
ration space, with R = N −M , that is automatically compatible with the constraints h(q) = 0.
The constraints are thus discarded from the formulation. At the same time, it is also possible to
eliminate the appearance of the multipliers (i.e., of the forces that arise when attempting to violate
the constraints) in the resulting dynamic equations.

We provide first the terms that appear in (1), namely the robot inertia matrix B, the Coriolis
and centrifugal vector c, and the matrix A. The kinetic energy1 is

T = T1 + T2 =
1
2
I1q̇

2
1 +

1
2
(
I2q̇

2
1 +m2v

T
c2vc2

)
.

Since

pc2 =
(

(q2 − d) cos q1
(q2 − d) sin q1

)
⇒ vc2 = ṗc2 =

(
−(q2 − d) sin q1q̇1 + q̇2 cos q1
(q2 − d) cos q1q̇1 + q̇2 sin q1

)
,

it follows

T =
1
2
(
I1 + I2 +m2(q2 − d)2

)
q̇21+

1
2
m2q̇

2
2 =

1
2
q̇T
(
I1 + I2 +m2(q2 − d)2 0

0 m2

)
q̇ =

1
2
q̇TB(q)q̇.

From the inertia matrix, using the Christoffel symbols, we obtain

c(q, q̇) =
(

2m2(q2 − d)q̇1q̇2
−m2(q2 − d)q̇21

)
.

The (scalar) Cartesian constraint on the end-effector is

h(q) = q2 cos q1 − k = 0.

Thus,

A(q) =
∂h(q)
∂q

=
(
−q2 sin q1 cos q1

)
.

The reduction of the dynamics proceeds then as follows. In the present case, it is N = 2 and
M = 1, so that R = 1. Define the matrix D(q) (a row in our case) such that(

A(q)
D(q)

)
=
(
−q2 sin q1 cos q1
d1(q) d2(q)

)
is nonsingular.

1For simplicity, it is assumed that the first link has its center of mass on the axis of the first joint. Otherwise, if
the center of mass is at a distance dc1, simply replace I1 by I1 + m1d2

c1 in the following.
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A good choice is

D(q) =
(
q2 cos q1 sin q1

)
⇒ det

(
A(q)
D(q)

)
= −q2.

Since the end-effector is constrained to live on x = k > 0, it will always be q2 6= 0. Thus, the
requested non-singularity of the matrix holds globally as long as the constraint is enforced. This
implies that the following derivations will lead also to a globally defined reduced model.

Define then the pseudovelocity v (a scalar) and its derivative v̇ (the pseudoacceleration) as

v = D(q)q̇ = q2 cos q1q̇1 + sin q1q̇2,

v̇ = D(q)q̈ + Ḋ(q)q̇ = q2 cos q1q̈1 + sin q1q̈2 − q2 sin q1q̇21 + 2 cos q1q̇1q̇2.

To invert these relations, define

(
E(q) F (q)

)
=
(
A(q)
D(q)

)−1

=

 − sin q1
q2

cos q1
q2

cos q1 sin q1

 .

We obtain then

q̇ = F (q) v =

 cos q1
q2

sin q1

 v,

q̈ = F (q) v̇ + Ḟ (q)v =

 cos q1
q2

sin q1

 v̇ +

 −
(

sin q1q̇1
q2

+
cos q1q̇2
q22

)
cos q1q̇1

 v.

(2)

Based on their definitions, the matrix relations AF = O and AE = I hold for all q. Premul-
tiplying (1) by F T (q) and substituting the acceleration q̈ from (2) yields

F T (q)B(q)F (q) v̇ = F T (q)
(
u−B(q)Ḟ (q)v − c(q, q̇)

)
, (3)

which is the reduced dynamics that we were looking for —in fact, a scalar first-order differential
equation in v. All terms in (3) have been defined, but we can write more explicitly the leading
scalar (a pseudoinertia)

F T (q)B(q)F (q) =
(
I1 + I2 +m2(q2 − d)2

) cos2 q1
q22

+m2 sin2 q1.

Similarly, by premultiplying (1) by ET (q) (a row) we can isolate the scalar multiplier λ. Sub-
stituting the acceleration q̈ from (2) yields

λ = ET (q)
(
B(q)F (q)v̇ +B(q)Ḟ (q)v + c(q, q̇)− u

)
. (4)

The control task is defined at the end-effector level, and requires the stabilization to zero of
the error ev = vd − v for the tangential velocity and of the error eλ = λd − λ for the normal force.
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The tangential and normal directions are indeed referred to the geometry of the constraint. This
hybrid control task is easily achieved in a linear and decoupled way by using a preliminary feedback
linearization law for the joint-space control input u ∈ R2. Defining in eqs. (3) and (4)

u = B(q)Ḟ (q)v + c(q, q̇) +B(q)F (q)u1 −AT (q)u2

leads simultaneously to
v̇ = u1, λ = u2.

The control design is completed by choosing

u1 = k1 ev, u2 = λd + k2

∫ t

0

eλ(τ)dτ,

with k1 > 0, k2 > 0. Beside the feedforward term (λd in the force loop, while v̇d = 0 in the velocity
loop for constant desired velocity), we have respectively a proportional action on the velocity error
and an integral action on the force error. The two error dynamics will be

ėv + k1ev = 0, eλ + k2

∫
eλ = 0,

both exponentially converging to zero.

∗ ∗ ∗ ∗ ∗
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