Robotics II

January 9, 2013

Exercise 1

Figure 1: A $3 R$ planar robot with unitary link lengths and two sets of task variables
Consider the $3 R$ planar robot of Fig. 1, having links of unitary length and with the generalized coordinates defined therein. This robot is redundant for the task of positioning its end-effector at $\boldsymbol{p}=\left(p_{x}, p_{y}\right)$, as well as for the task of imposing a value to the second link end-point height y_{a}.
a) For each separate task, define the associated task Jacobian and its singularities.
b) Characterize the so-called algorithmic singularities (configurations where each task can be executed separately, but not both tasks simultaneously).
c) For the simultaneous execution of both tasks, provide the expression of an inverse differential kinematic solution at the velocity level, based on a task-priority strategy that assigns higher priority to the end-effector position task.

Exercise 2

Figure 2: A $R P$ robot moving on a horizontal plane with its end-effector constrained on a line
The end-effector of the $R P$ robot in Fig. 2 is constrained to move on the Cartesian line $x=k$, with $k>0$. For this operative condition, derive the expression of the constrained robot dynamics (in this case, two second-order differential equations, with a dynamically consistent projection matrix acting on forces/torques so as to automatically satisfy the motion constraint in any admissible robot state).

Solutions

January 9, 2013

Exercise 1

Being the generalized coordinates $q_{i}(i=1,2,3)$ the absolute angles of the links w.r.t. the \boldsymbol{x}_{0} axis, the end-effector position is expressed as

$$
\boldsymbol{p}=\binom{\cos q_{1}+\cos q_{2}+\cos q_{3}}{\sin q_{1}+\sin q_{2}+\sin q_{3}}=\boldsymbol{f}_{1}(\boldsymbol{q})
$$

The associated task Jacobian is

$$
\boldsymbol{J}_{1}(\boldsymbol{q})=\frac{\partial \boldsymbol{f}_{1}}{\partial \boldsymbol{q}}=\left(\begin{array}{ccc}
-\sin q_{1} & -\sin q_{2} & -\sin q_{3} \\
\cos q_{1} & \cos q_{2} & \cos q_{3}
\end{array}\right)
$$

and is singular if and only if

$$
\begin{equation*}
\sin \left(q_{2}-q_{1}\right)=\sin \left(q_{3}-q_{2}\right)=0, \quad\left(\Rightarrow \sin \left(q_{3}-q_{1}\right)=0\right) \tag{1}
\end{equation*}
$$

or, in terms of Denavit-Hartenberg relative link angles $\theta_{i}=q_{i}-q_{i-1}$ (for $i=2.3$), when $\sin \theta_{2}=$ $\sin \theta_{3}=0$. This occurs only when all three links are folded or stretched along a common radial line originating at the robot base.

The height y_{a} of the end-point of the second link and its associated task Jacobian are given by

$$
y_{a}=\sin q_{1}+\sin q_{2}=f_{2}(\boldsymbol{q}) \quad \Rightarrow \quad \boldsymbol{J}_{2}(\boldsymbol{q})=\frac{\partial f_{2}}{\partial \boldsymbol{q}}=\left(\begin{array}{lll}
\cos q_{1} & \cos q_{2} & 0
\end{array}\right)
$$

This Jacobian is singular if and only if

$$
\begin{equation*}
\cos q_{1}=\cos q_{2}=0 \tag{2}
\end{equation*}
$$

namely when the first two links are either folded or stretched and the end-point of the second link is on the \boldsymbol{y}_{0} axis.

When considering the two tasks together, the Extended Jacobian is square

$$
\boldsymbol{J}_{E}(\boldsymbol{q})=\binom{\boldsymbol{J}_{1}(\boldsymbol{q})}{\boldsymbol{J}_{2}(\boldsymbol{q})}=\left(\begin{array}{ccc}
-\sin q_{1} & -\sin q_{2} & -\sin q_{3} \\
\cos q_{1} & \cos q_{2} & \cos q_{3} \\
\cos q_{1} & \cos q_{2} & 0
\end{array}\right)
$$

Algorithmic singularities will occur when both \boldsymbol{J}_{1} and \boldsymbol{J}_{2} are full (row) rank, but

$$
\begin{equation*}
\operatorname{det} \boldsymbol{J}_{E}=-\cos q_{3} \cdot \sin \left(q_{2}-q_{1}\right)=0 . \tag{3}
\end{equation*}
$$

Comparing eqs. (1-2) with (3), this happens when

- the third link is vertical $\left(\cos q_{3}=0\right)$, while the first two are not; or,
- the first two links are aligned $\left(\sin \left(q_{2}-q_{1}\right)=0\right)$ but not vertical, and the third link is not aligned with the first two.

Indeed, the above are only particular conditions for singularity of the Extended Jacobian. In fact, \boldsymbol{J}_{E} is not invertible as soon as the third link is vertical and/or the first two links are aligned, no matter what is the situation of the other links.

Let $\boldsymbol{v}_{d} \in \mathbb{R}^{2}$ be a desired velocity for the robot end-effector and $\dot{y}_{a, d}$ a desired height variation rate for the end-point of the second link. An inverse solution of the form

$$
\dot{\boldsymbol{q}}=\boldsymbol{J}_{E}^{-1}(\boldsymbol{q})\binom{\boldsymbol{v}_{d}}{\dot{y}_{a, d}}
$$

will blow out as soon as a singularity occurs for \boldsymbol{J}_{E}. A task-priority solution, with the first task (of dimension $m_{1}=2$) of higher priority than the second one (of dimension $m_{2}=1$), is given by

$$
\begin{equation*}
\dot{\boldsymbol{q}}=\boldsymbol{J}_{1}^{\#}(\boldsymbol{q}) \boldsymbol{v}_{d}+\left(\boldsymbol{J}_{2}(\boldsymbol{q})\left(\boldsymbol{I}-\boldsymbol{J}_{1}^{\#}(\boldsymbol{q}) \boldsymbol{J}_{1}(\boldsymbol{q})\right)\right)^{\#}\left(\dot{y}_{a, d}-\boldsymbol{J}_{2}(\boldsymbol{q}) \boldsymbol{J}_{1}^{\#}(\boldsymbol{q}) \boldsymbol{v}_{d}\right) . \tag{4}
\end{equation*}
$$

This will guarantee perfect execution of the first task even when \boldsymbol{J}_{E} is singular (i.e., eq. (3) holds), provided that eq. (1) is not satisfied (in particular, in algorithmic singularities, where eq. (2) is not satisfied too).

Using the properties of projection matrices (symmetry and idempotency), and being the matrix $\boldsymbol{J}_{2}\left(\boldsymbol{I}-\boldsymbol{J}_{1}^{\#} \boldsymbol{J}_{1}\right)$ a row vector in our case, the solution (4) can also be rewritten as

$$
\dot{\boldsymbol{q}}=\boldsymbol{J}_{1}^{\#}(\boldsymbol{q}) \boldsymbol{v}_{d}+\alpha\left(\boldsymbol{I}-\boldsymbol{J}_{1}^{\#}(\boldsymbol{q}) \boldsymbol{J}_{1}(\boldsymbol{q})\right) \boldsymbol{J}_{2}^{T}(\boldsymbol{q})
$$

with the scalar

$$
\alpha=\alpha\left(\boldsymbol{q}, \boldsymbol{v}_{d}, \dot{y}_{a, d}\right)=\frac{\dot{y}_{a, d}-\boldsymbol{J}_{2}(\boldsymbol{q}) \boldsymbol{J}_{1}^{\#}(\boldsymbol{q}) \boldsymbol{v}_{d}}{\boldsymbol{J}_{2}(\boldsymbol{q})\left(\boldsymbol{I}-\boldsymbol{J}_{1}^{\#}(\boldsymbol{q}) \boldsymbol{J}_{1}(\boldsymbol{q})\right) \boldsymbol{J}_{2}^{T}(\boldsymbol{q})} .
$$

Exercise 2

Following the Lagrangian approach, with multipliers $\boldsymbol{\lambda}$ used to weigh the holonomic constraints $\boldsymbol{h}(\boldsymbol{q})=\mathbf{0}$, the dynamic equations (in the absence of gravity) take the form

$$
\boldsymbol{B}(\boldsymbol{q}) \ddot{\boldsymbol{q}}+\boldsymbol{c}(\boldsymbol{q}, \dot{\boldsymbol{q}})=\boldsymbol{u}+\boldsymbol{A}^{T}(\boldsymbol{q}) \boldsymbol{\lambda} \quad \text { s.t. } \quad \boldsymbol{h}(\boldsymbol{q})=\mathbf{0}
$$

with $\boldsymbol{A}(\boldsymbol{q})=\partial \boldsymbol{h}(\boldsymbol{q}) / \partial \boldsymbol{q}$. By further elaboration, one can eliminate the multipliers (the forces that arise when attempting to violate the constraints) and obtain the so-called constrained robot dynamics in the form

$$
\boldsymbol{B}(\boldsymbol{q}) \ddot{\boldsymbol{q}}=\left(\boldsymbol{I}-\boldsymbol{A}^{T}(\boldsymbol{q})\left(\boldsymbol{A}_{B}^{\#}(\boldsymbol{q})\right)^{T}\right)(\boldsymbol{u}-\boldsymbol{c}(\boldsymbol{q}, \dot{\boldsymbol{q}}))-\boldsymbol{B}(\boldsymbol{q}) \boldsymbol{A}_{B}^{\#}(\boldsymbol{q}) \dot{\boldsymbol{A}}(\boldsymbol{q}) \dot{\boldsymbol{q}}
$$

where

$$
\boldsymbol{A}_{B}^{\#}(\boldsymbol{q})=\boldsymbol{B}^{-1}(\boldsymbol{q}) \boldsymbol{A}^{T}(\boldsymbol{q})\left(\boldsymbol{A}(\boldsymbol{q}) \boldsymbol{B}^{-1}(\boldsymbol{q}) \boldsymbol{A}^{T}(\boldsymbol{q})\right)^{-1}
$$

is the (dynamically consistent) pseudoinverse of \boldsymbol{A}, weighted by the robot inertia matrix.
We need thus to provide the robot inertia matrix \boldsymbol{B}, the Coriolis and centrifugal vector \boldsymbol{c}, the matrix \boldsymbol{A} and its time derivative $\dot{\boldsymbol{A}}$. The kinetic energy ${ }^{1}$ is

$$
T=T_{1}+T_{2}=\frac{1}{2} I_{1} \dot{q}_{1}^{2}+\frac{1}{2}\left(I_{2} \dot{q}_{1}^{2}+m_{2} \boldsymbol{v}_{c 2}^{T} \boldsymbol{v}_{c 2}\right)
$$

[^0]Since

$$
\boldsymbol{p}_{c 2}=\binom{\left(q_{2}-d\right) \cos q_{1}}{\left(q_{2}-d\right) \sin q_{1}} \quad \Rightarrow \quad \boldsymbol{v}_{c 2}=\dot{\boldsymbol{p}}_{c 2}=\binom{-\left(q_{2}-d\right) \sin q_{1} \dot{q}_{1}+\dot{q}_{2} \cos q_{1}}{\left(q_{2}-d\right) \cos q_{1} \dot{q}_{1}+\dot{q}_{2} \sin q_{1}}
$$

it follows
$T=\frac{1}{2}\left(I_{1}+I_{2}+m_{2}\left(q_{2}-d\right)^{2}\right) \dot{q}_{1}^{2}+\frac{1}{2} m_{2} \dot{q}_{2}^{2}=\frac{1}{2} \dot{\boldsymbol{q}}^{T}\left(\begin{array}{cc}I_{1}+I_{2}+m_{2}\left(q_{2}-d\right)^{2} & 0 \\ 0 & m_{2}\end{array}\right) \dot{\boldsymbol{q}}=\frac{1}{2} \dot{\boldsymbol{q}}^{T} \boldsymbol{B}(\boldsymbol{q}) \dot{\boldsymbol{q}}$.
From the inertia matrix, using the Christoffel symbols, we obtain

$$
\boldsymbol{c}(\boldsymbol{q}, \dot{\boldsymbol{q}})=\binom{2 m_{2}\left(q_{2}-d\right) \dot{q}_{1} \dot{q}_{2}}{-m_{2}\left(q_{2}-d\right) \dot{q}_{1}^{2}} .
$$

The (scalar) Cartesian constraint on the end-effector is

$$
h(\boldsymbol{q})=q_{2} \cos q_{1}-k=0 .
$$

Thus,

$$
\boldsymbol{A}(\boldsymbol{q})=\frac{\partial h(\boldsymbol{q})}{\partial \boldsymbol{q}}=\left(\begin{array}{ll}
-q_{2} \sin q_{1} & \cos q_{1}
\end{array}\right)
$$

and

$$
\dot{\boldsymbol{A}}(\boldsymbol{q})=\left(\begin{array}{cc}
-\dot{q}_{2} \sin q_{1}-q_{2} \cos q_{1} \dot{q}_{1} & -\sin q_{1} \dot{q}_{1}
\end{array}\right) .
$$

Since q_{2} is never allowed to go to zero (by the constraint $x=k>0$ on the end-effector), matrix \boldsymbol{A} has always full rank and all expressions in the constrained dynamics hold without singularities. For instance, the dynamically consistent weighted pseudoinverse takes the final expression

$$
\boldsymbol{A}_{B}^{\#}(\boldsymbol{q})=\frac{m_{2}\left(I_{1}+I_{2}+m_{2}\left(q_{2}-d\right)^{2}\right)}{I_{1}+I_{2}+m_{2} q_{2}^{2}+m_{2} d\left(d-2 q_{2}\right) \cos ^{2} q_{1}}\binom{-\frac{q_{2} \sin q_{1}}{I_{1}+I_{2}+m_{2}\left(q_{2}-d\right)^{2}}}{\frac{\cos q_{1}}{m_{2}}}
$$

[^0]: ${ }^{1}$ For simplicity, it is assumed that the first link has its center of mass on the axis of the first joint. Otherwise, if the center of mass is at a distance $d_{c 1}$, simply replace I_{1} by $I_{1}+m_{1} d_{c 1}^{2}$ in the following.

