
Robotics II
June 11, 2012

Exercise 1

In an image-based visual servoing scheme, a pin-hole camera with constant focal length λ > 0 is
mounted on the end-effector of a robot manipulator. A fixed Cartesian point P = (X Y Z)T ,
whose coordinates are expressed in the camera frame and having Z > 0, is associated to a point
feature f = (u v)T in the image plane. The 2× 6 interaction matrix Jp in

ḟ = Jp(u, v, Z)
(
v
ω

)
provides the velocity of the point feature f when the robot imposes to the camera a linear velocity
v ∈ R3 and an angular velocity ω ∈ R3, both expressed in the camera frame. Determine a basis
for all possible motions of the camera that do not move the point feature in the image plane, i.e.,
yielding ḟ = 0. How many independent pure translation motions (i.e., with ω = 0) of this kind
exist for the camera? And how many independent pure rotation motions (i.e., with v = 0)?

Exercise 2

A planar 3R robot with equal uniform thin rod links of unitary length moves in the vertical plane,
actuated by the joint torques τ ∈ R3 and subject to a constant contact force F c applied to the
midpoint of the second link and pointing always upward (see Fig. 1).
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Figure 1: A planar 3R robot with a contact force

• Define a control law for τ that regulates the robot to a desired generic equilibrium state
(q, q̇) = (qd,0) and give the explicit expression of the kinematic and dynamic terms needed
for its implementation. The contact force and its location are assumed to be known, and
thus there is no need of a force sensor. Provide a Lyapunov candidate that allows to prove
the global asymptotic stability of the closed-loop system using Lyapunov/LaSalle arguments.

• Suppose that the robot is in its desired steady state (qd,0) under the action of the previously
defined control law. The contact force is then suddenly doubled in intensity, but the control
law is left unchanged. Does the third joint accelerate instantaneously? Assuming that the
system remains stable, find a characterization of the new final configuration reached at the
end of the transient in terms of the parameters of the controller.

• If the contact force could be measured, would it be possible to preserve the global asymptotic
stability of the original state (qd,0) by suitably modifying the control law? If so, how?

[180 minutes; open books]
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Solution
June 11, 2012

Exercise 1

The interaction matrix Jp for a point feature takes the form (see lecture slides)

Jp =

 −
λ

Z
0

u

Z

uv

λ
−u

2

λ
− λ v

0
λ

Z

v

Z

v2

λ
+ λ −uv

λ
−u

 =
(
Jv Jω

)
. (1)

Since λ > 0 and Z is limited (by the range of the camera), the interaction matrix as well as its
two (2× 3) blocks Jv and Jω will all have rank 2, independently from the values of u and v.

The problem requires to define a basis for the null space of Jp in the six-dimensional space of
linear and angular camera velocity (v,ω). From the analysis of the structure of Jp in (1), we have
that

dimN {Jp} = 4, dimN {Jv} = 1, dimN {Jω} = 1.

This means that there will be four independent velocity vector of the camera that will not move
the feature (u, v) in the image plane, and that one such vector can be given the form of a pure
translation (v,0) and another one of a pure rotation (0,ω). The other two vectors will be associated
to roto-translations. With this in mind, we can solve the problem by inspection or by resorting to
the following symbolic Matlab code.

% null space of point feature interaction matrix

clear all
clc
syms lam u v Z real

J =
[ -lam/Z, 0, u/Z, (u*v)/lam, - u2/lam - lam, v]
[ 0, -lam/Z, v/Z, v2/lam + lam, -(u*v)/lam, -u];

N=null(J)

% check special case for u=v=0 (point at the center of the image plane)

Norigin=subs(N,[u,v],[0,0])

% check alternative solution (a pure rotation) that Matlab does not provide as such

nrot=simplify(u*N(:,2)+v*N(:,3)+lam*N(:,4))
verifynrot=simplify(J*nrot)

% OUTPUT

N =
[ u/lam, (Z*u*v)/lam2, -(Z*(lam2 + u2))/lam2, (Z*v)/lam]
[ v/lam, (Z*(lam2 + v2))/lam2, -(Z*u*v)/lam2, -(Z*u)/lam]
[ 1, 0, 0, 0]
[ 0, 1, 0, 0]
[ 0, 0, 1, 0]
[ 0, 0, 0, 1]
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Norigin =
[ 0, 0, -Z, 0]
[ 0, Z, 0, 0]
[ 1, 0, 0, 0]
[ 0, 1, 0, 0]
[ 0, 0, 1, 0]
[ 0, 0, 0, 1]

nrot =
0
0
0
u
v
lam

verifyrot =
0
0

The columns of matrix N provide the solution. It is apparent that the first vector (conveniently
scaled by λ) is a pure translation

λ N(:, 1) =


u
v
λ

0

 =

(
v

0

)
.

This represents a linear motion of the camera along the ray connecting the point (u, v) on the
image plane to the Cartesian point (X,Y.Z). On the other hand, the remaining three basis vectors
for the null space of Jp found by Matlab have all the form of roto-translations. However, it is easy
to see that their linear combination

u N(:, 2) + v N(:, 3) + λ N(:, 4) =


0
u
v
λ

 =
(

0
ω

)

is a pure rotation along the previously defined ray. Indeed, if not properly guided, Matlab will
find the null space of a matrix by suitable orthogonalizations and normalizations (see the resulting
(4× 4) identity matrix in the lower part of N), without providing automatically a solution with a
desired physical meaning.

Finally, the two remaining null space vectors can be given the form of roto-translations, either
both with linear and angular components in the image plane

λ2 N(:, 2) =


uvZ

(v2 + λ2)Z
0
λ2

0
0

 , λ2 N(:, 3) =


−(u2 + λ2)Z
−uvZ

0
0
λ2

0

 ,
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or one still of this type and the other with linear component in the image plane and angular
component along the camera main axis

λ2 (N(:, 2) + N(:, 3)) =


−
(
u2 + λ2 − uv

)
Z(

v2 + λ2 − uv
)
Z

0
λ2

λ2

0

 , λ N(:, 4) =


vZ
−uZ

0
0
0
λ

 .

Exercise 2

The robot dynamics, under the action of the contact force F c and the motor control torque τ , is
described by

B(q)q̈ + c(q, q̇) + g(q) = τ + JT
c (q)F c,

where the Jacobian Jc(q) is associated to the linear velocity (in the plane) of the mid point of the
second robot link, where the contact force is applied in the upward direction. For a regulation task
in the presence of the constant and known force F c, we can use the control law

τ = g(q)− JT
c (q)F c +KP (qd − q)−KDq̇. (2)

In fact, by canceling gravity and the effect of the contact force at the joint level, the task becomes
in this way one of free regulation in the absence of gravity. This is solvable by a PD joint error
action with KP > 0 and KD > 0, yielding global asymptotic stability of the desired equilibrium
state (qd,0). The proof uses the Lyapunov candidate

V =
1
2
q̇TB(q)q̇ +

1
2

(qd − q)T
KP (qd − q)

and LaSalle analysis.

To implement the control law (2), we need to measure only (q, q̇) (no force sensing is needed)
and compute g(q) and J(q). From the gravitational potential energy

U = U1 + U2 + U3 = g0

(
m1

`1
2
s1 +m2

(
`1s1 +

`2
2
s12

)
+m3

(
`1s1 + `2s12 +

`3
2
s123

))
,

setting `1 = `2 = `3 = 1, we obtain

g(q) =
(
∂U(q)
∂q

)T

=
g0
2

 m1c1 +m2 (2c1 + c12) +m3 (2c1 + 2c12 + c123)
m2c12 +m3 (2c12 + c123)

m3c123

 .

From the positional kinematics of the mid point of the second link

pc = f c(q) =

(
`1c1 + 0.5 `2c12
`1s1 + 0.5 `2s12

)
,

setting `1 = `2 = 1, we obtain

Jc(q) =
∂f(q)
∂q

=
1
2

(
− (2s1 + s12) −s12 0

2c1 + c12 c12 0

)
.
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Therefore

JT
c (q)F c = JT

c (q)

(
0
Fc,y

)
=
Fc,y

2

 2c1 + c12

c12

0

 .

Note that no additional control torque is present at the third joint since the contact force is applied
at the second link. However, this contact force, if not compensated, will in general accelerate also
the third joint because of the inertial coupling.

With the robot at the desired equilibrium state (qd,0) under the action of the control law (2),
suppose that the contact force is doubled from F c to 2F c. The dynamic equations become in this
state

B(qd)q̈ = −JT
c (qd)F c + 2JT

c (qd)F c = JT
c (qd)F c

and thus the instantaneous acceleration is

q̈ = B−1(qd)JT
c (qd)F c.

Being in general the inertia matrix a full matrix (and so its inverse), all joints will have a non-zero
acceleration q̈i, including q̈3.

Suppose now that a new steady state is reached, with q = q̄ and q̇ = q̈ = 0. In this equilibrium
state, it is necessarily

KP (qd − q̄) + JT
c (q̄)F c = 0. (3)

We can determine the equilibrium configuration q̄ only by solving numerically the nonlinear equa-
tion (3). However, assuming that KP is chosen diagonal as usual, since the last component of
JT

c (q)F c is always zero, the third equation in (3) becomes

KP,3 (qd,3 − q̄3) = 0 ⇒ q̄3 = qd,3

while q̄i 6= qd,i for i = 1, 2. This means that the third joint will resume its desired value after the
perturbation due to the doubling of the contact force acting on the second link.

Finally, if the contact force is measured (in some way) and used in feedback control, then the
same law (2) —now with any value for the measured quantity JT

c (q)F c— will guarantee that
(qd,0) will always remain the unique globally asymptotically stable equilibrium for the robot
system.

∗ ∗ ∗ ∗ ∗
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