
Robotics II
September 12, 2011

1. A 2R robot moving in the vertical plane and having link lengths l1 = l2 = 1 [m] is self-balanced
with respect to gravity in the absence of a payload (see Fig. 1). Provide the mechanical
conditions under which the gravity term in the dynamics of this robot is identically zero for
any configuration q = (q1, q2).
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Figure 1: A 2R robot

2. For a regulation task to a desired qd, the following control law (PD + constant gravity
compensation)

u = KP (qd − q)−KD q̇ + g(qd), KP > 0, KD > 0, (1)

is applied to this robot, now in the presence of a point-wise payload of known mass M located
at the end of the second link.

a) Derive the correct expression of the gravity term g(qd) in (1).

b) Given the fixed choice of PD gain matrices

KP = diag{100, 100}, KD = diag{25, 25}, (2)

provide an upper bound for the value of M such that the control law (1), with the gains
chosen as in (2), certainly guarantees global asymptotic stability of the equilibrium state
(q, q̇) = (qd,0). It is suggested to perform an approximate (conservative) analysis.

[120 minutes; open books]
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Solution
September 12, 2011

In the absence of a payload, the potential energy U due to gravity is

U = U1 + U2, U1 = m1g0 d1 sin q1, U2 = m2g0 (l1 sin q1 + d2 sin(q1 + q2)) ,

where m1 and m2 are the masses of the two links, g0 = 9.81 [m/s2] is the gravity acceleration, and
d1 and d2 are the (oriented) distances of the the center of mass of link 1 and, respectively, of link
2 from the associated joint axes (d1 and d2 can be positive, zero, or negative). The gravity term
is then

g(q) =
(
∂U

∂q

)T
=

(
(m1d1 +m2l1)g0 cos q1 +m2d2g0 cos(q1 + q2)

m2d2g0 cos(q1 + q2)

)
,

from which the requested mechanical conditions are:

g(q) ≡ 0 ⇐⇒


d2 = 0,

d1 = −m2

m1
l1 < 0.

The center of mass of the second link is then on the axis of joint 2, while the center of mass of the
first link is located ‘in opposition’ to the second link 2 with respect to the joint 2 axis so that the
center of gravity of the two masses of the first and second link lies always on the axis of joint 1.
In these conditions, it follows that U ≡ 0 (or constant).

In the presence of a payload, the additional potential energy UM due to the point-wise mass
M at the end-effector is

UM = Mg0 (l1 sin q1 + l2 sin(q1 + q2)) ,

and so the gravity term in the robot dynamics becomes

g(q) =
(
∂UM
∂q

)T
= Mg0

(
l1 cos q1 + l2 cos(q1 + q2)

l2 cos(q1 + q2)

)
.

Evaluating this at q = qd yields the term g(qd) in the control law (1).

For part 2.b, one relies on the property of boundedness for the gradient of the gravity term for
all configurations of the robot, i.e., ∥∥∥∥∂g(q)

∂q

∥∥∥∥ ≤ α, ∀q,

where α is a suitable (large enough) positive constant, and the norm of the matrix A =
∂g

∂q
is

defined1 as the square root of the largest eigenvalue of the (symmetric and positive semi-definite)
matrix ATA:

‖A‖ =
√
λmax

(
ATA

)
.

1This matrix norm is the one induced by (or, naturally associated with) the standard Euclidean norm of vectors:

‖x‖ =
√

xT x.
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Indeed, both the configuration-dependent norm of matrix A and its constant upper bound α will
be functions of (in particular, increase with) the mass M . In order to guarantee that the control
law (1) globally asymptotically stabilizes any desired equilibrium state of the robot, with the PD
gains chosen as in (2), it will be sufficient to have

α < KP,min = 100. (3)

We compute then

A =
∂g

∂q
= Mg0

(
−l1 sin q1 − l2 sin(q1 + q2) −l2 sin(q1 + q2)

−l2 sin(q1 + q2) −l2 sin(q1 + q2)

)
,

and

ATA = (Mg0)2 ·(
(l1 sin q1 + l2 sin(q1 + q2))2 + (l2 sin(q1 + q2))2 (l1 sin q1 + l2 sin(q1 + q2)) l2 sin(q1 + q2)

(l1 sin q1 + l2 sin(q1 + q2)) l2 sin(q1 + q2) 2 (l2 sin(q1 + q2))2

)
.

The two (real and non-negative) eigenvalues of ATA are the roots of

det
(
λI −ATA

)
= λ2 − b(q,M)λ+ c(q,M) = 0,

with

b(q,M) = (Mg0)4
(

(l1 sin q1 + l2 sin(q1 + q2))2 + 3 (l2 sin(q1 + q2))2
)
≥ 0,

c(q,M) = (Mg0)4
[
2 (l2 sin(q1 + q2))4 + (l2 sin(q1 + q2))2 (l1 sin q1 + l2 sin(q1 + q2))2

]
≥ 0,

and where the inequalities on the right hold for all q and all positive values of M . For a given
M > 0 and q, the largest of the two eigenvalues is written compactly as

λmax

(
AT (q,M)A(q,M)

)
=
b(q,M) +

√
b2(q,M)− 4 c(q,M)

2
.

From the non-negativity of both b and c, an upper bound to this expression is obtained by simply
neglecting c, so that

λmax

(
AT (q,M)A(q,M)

)
≤ b(q,M).

The maximum value for b(q,M) over all possible q is obtained when simultaneously

sin q1 = 1 AND sin(q1 + q2) = 1 (e.g., for q1 = π/2, q2 = 0).

Plugging the numerical values of the link lengths, l1 = l2 = 1, and setting g0 = 9.81, we can set
for the constant α to be used as an upper bound to ‖∂g/∂q‖

α2 = b(q,M)|q1=π/2,q2=0 = 7 · (9.81)4 ·M4,

and thus
α =
√

7 · (9.81)2 ·M2.

Therefore, the inequality (3) is satisfied for

M <
10

9.81
1
4
√

7
' 0.6267 [kg].
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