
Robotics II
June 15, 2010

For the planar RP robot under gravity shown in Fig. 1, consider a class of one-dimensional tasks
defined only in terms of the y-component of the end-effector Cartesian position

y = py(q1, q2).
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Figure 1: RP robot in the vertical plane, with definition of coordinates (d2 > 0 is a constant)

Noting that the robot is redundant for this class of tasks, determine the explicit expression of the
actuation input τ = (τ1, τ2) that, at a generic robot state (q, q̇), realizes a desired ÿd = A and has
the minimum norm property.

[90 minutes; open books]
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Solution
June 15, 2010

The dynamic model of the RP robot

B(q)q̈ + c(q, q̇) + g(q) = τ (1)

should be obtained first.

With reference to Fig. 1, the robot kinetic energy T is given by

T1 =
1
2
I1 q̇

2
1

T2 =
1
2
m2‖vc2‖2 +

1
2
I2 q̇

2
1 =

1
2

(I2 +m2 q
2
2) q̇21 +

1
2
m2 q̇

2
2

T = T1 + T2 =
1
2
q̇TB(q)q̇ ⇒ B(q) =

(
I1 + I2 +m2 q

2
2 0

0 m2

)
=
(
b11(q2) 0

0 b22

)
.

Using the Christoffel’s symbols for the components of the velocity vector c(q, q̇)

ci(q, q̇) = q̇TCi(q)q̇ Ci(q) =
1
2

((
∂bi(q)
∂q

)
+
(
∂bi(q)
∂q

)T

−
(
∂B(q)
∂qi

))
i = 1, 2,

the Coriolis and centrifugal terms are determined as follows:

C1(q) =
(

0 m2 q2
m2 q2 0

)
⇒ c1(q2, q̇1, q̇2) = 2m2 q2 q̇1q̇2

C2(q) =
(
−2m2 q2 0

0 0

)
⇒ c2(q1, q̇1) = −m2 q2 q̇

2
1 .

The robot potential energy U is given by

U1 = U10 U2 = m2g0 q2 sin q1 + U20

U = U1 + U2 = m2g0 q2 sin q1 + U10 + U20

⇒ g(q) =
(
∂U(q)
∂q

)T

=
(
m2g0 q2 cos q1
m2g0 sin q1

)
=
(
g1(q1, q2)
g2(q1)

)
,

with g0 = 9.81 > 0.

The direct kinematics associated to the end-effector position of the RP robot is

p =
(
px

py

)
=
(

(d2 + q2) cos q1
(d2 + q2) sin q1

)
,

where d2 > 0 is the constant length shown in Fig. 1. Being the task defined only in terms of the
py component, it is

ṗy =
(

(d2 + q2) cos q1 sin q1
)
q̇ = J(q)q̇

and then

p̈y = J(q)q̈ + J̇(q)q̇ = J(q)q̈ +
(

cos q1 q̇2 − (d2 + q2) sin q1 q̇1 cos q1 q̇1
)
q̇. (2)
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Note that the task Jacobian J is singular if and only if sin q1 = 0 and q2 = −d2.

Replacing in (2) the accelerations q̈ from (1) yields

p̈y = J(q)B−1(q) (τ − c(q, q̇)− g(q)) + J̇(q)q̇

Setting then p̈y = A and reorganizing terms, we obtain

M(q)τ = A− J̇(q)q̇ + J(q)B−1(q) (c(q, q̇) + g(q)) =: d(q, q̇),

having defined also

M(q) = J(q)B−1(q) =
(

(d2 + q2) cos q1
b11(q2)

sin q1
b22

)
.

At a generic robot state (q, q̇), the question at hand is then formulated as a linear-quadratic
optimization problem in the standard form

min
1
2
‖τ‖2 =

1
2
(
τ2
1 + τ2

2

)
s.t. Mτ = d.

The optimal solution is simply
τ ∗ = M#d, (3)

where all quantities have been already defined. In explicit terms, in case of full (row) rank M we
have1

M# = B−1JT
(
JB−2JT

)−1

.

In particular, out of the singularities of the 1× 2 matrix M , which coincide with those of the task
Jacobian J , the pseudoinverse of M has the explicit expression

M#(q) =
1(

(d2 + q2) cos q1
b11(q2)

)2

+
(

sin q1
b22

)2


(d2 + q2) cos q1

b11(q2)

sin q1
b22

 .

The optimal solution (3) implies that both joints/actuators are typically involved in this one-
dimensional task. Although in general the task could have been realized also by actuating only a
single joint (the revolute or the prismatic one), the combination results in the minimum actuation
effort.

It should be remarked that the norm of τ has a dimensionality problem. In fact, the first
actuation input is a torque (on the revolute joint) and the second is a force (on the prismatic
joint), so that physical units are mixed in computing the norm. A way to handle this problem is
to introduce a proper scaling in the objective function, i.e., considering a positive definite diagonal
matrix W = diag{1, w} > 0 and minimizing

1
2
τTWτ =

1
2
(
τ2
1 + w τ2

2

)
,

1Note also that in general M# = (JB−1)# 6= BJ#. The equality holds if B = b · I, for a scalar b.
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where the scalar w > 0 takes into account how costly a unit of torque is in comparison to a unit
of force. The associated solution is then obtained by replacing the pseudoinverse of M in (3) by
its weighted pseudoinverse

M#
W = W−1MT

(
MW−1MT

)−1

.

Finally, it is worth mentioning that the above local solution with minimum norm of the actua-
tion inputs is prone to an internal build up of joint velocities, especially for long task trajectories.
A countermeasure to this phenomenon is to choose a solution of the form

τ = M#d+
(
I −M#M

)
τ 0, (4)

with τ 0 = −KDq̇ and where KD is a diagonal, positive definite matrix. The additional torque
τ 0 damps the joint velocity q̇, without affecting the execution of the task. It is also easy to see
that (4) is the solution to the following modified linear-quadratic optimization problem

min
1
2

(τ − τ 0)T (τ − τ 0) s.t. Mτ = d.

∗ ∗ ∗ ∗ ∗
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