Robotics II

For the planar RP robot under gravity shown in Fig. 1, consider a class of one-dimensional tasks defined only in terms of the y-component of the end-effector Cartesian position

$$
y=p_{y}\left(q_{1}, q_{2}\right)
$$

Figure 1: RP robot in the vertical plane, with definition of coordinates ($d_{2}>0$ is a constant)
Noting that the robot is redundant for this class of tasks, determine the explicit expression of the actuation input $\boldsymbol{\tau}=\left(\tau_{1}, \tau_{2}\right)$ that, at a generic robot state $(\boldsymbol{q}, \dot{\boldsymbol{q}})$, realizes a desired $\ddot{y}_{d}=A$ and has the minimum norm property.
[90 minutes; open books]

Solution

June 15, 2010

The dynamic model of the RP robot

$$
\begin{equation*}
B(\boldsymbol{q}) \ddot{\boldsymbol{q}}+\boldsymbol{c}(\boldsymbol{q}, \dot{\boldsymbol{q}})+\boldsymbol{g}(\boldsymbol{q})=\boldsymbol{\tau} \tag{1}
\end{equation*}
$$

should be obtained first.
With reference to Fig. 1, the robot kinetic energy T is given by

$$
\begin{aligned}
T_{1} & =\frac{1}{2} I_{1} \dot{q}_{1}^{2} \\
T_{2} & =\frac{1}{2} m_{2}\left\|v_{c 2}\right\|^{2}+\frac{1}{2} I_{2} \dot{q}_{1}^{2}=\frac{1}{2}\left(I_{2}+m_{2} q_{2}^{2}\right) \dot{q}_{1}^{2}+\frac{1}{2} m_{2} \dot{q}_{2}^{2} \\
T & =T_{1}+T_{2}=\frac{1}{2} \dot{\boldsymbol{q}}^{T} \boldsymbol{B}(\boldsymbol{q}) \dot{\boldsymbol{q}} \quad \Rightarrow \quad \boldsymbol{B}(\boldsymbol{q})=\left(\begin{array}{cc}
I_{1}+I_{2}+m_{2} q_{2}^{2} & 0 \\
0 & m_{2}
\end{array}\right)=\left(\begin{array}{cc}
b_{11}\left(q_{2}\right) & 0 \\
0 & b_{22}
\end{array}\right) .
\end{aligned}
$$

Using the Christoffel's symbols for the components of the velocity vector $\boldsymbol{c}(\boldsymbol{q}, \dot{\boldsymbol{q}})$

$$
c_{i}(\boldsymbol{q}, \dot{\boldsymbol{q}})=\dot{\boldsymbol{q}}^{T} \boldsymbol{C}_{i}(\boldsymbol{q}) \dot{\boldsymbol{q}} \quad \boldsymbol{C}_{i}(\boldsymbol{q})=\frac{1}{2}\left(\left(\frac{\partial \boldsymbol{b}_{i}(\boldsymbol{q})}{\partial \boldsymbol{q}}\right)+\left(\frac{\partial \boldsymbol{b}_{i}(\boldsymbol{q})}{\partial \boldsymbol{q}}\right)^{T}-\left(\frac{\partial \boldsymbol{B}(\boldsymbol{q})}{\partial q_{i}}\right)\right) \quad i=1,2
$$

the Coriolis and centrifugal terms are determined as follows:

$$
\begin{aligned}
& \boldsymbol{C}_{1}(\boldsymbol{q})=\left(\begin{array}{cc}
0 & m_{2} q_{2} \\
m_{2} q_{2} & 0
\end{array}\right) \quad \Rightarrow \quad c_{1}\left(q_{2}, \dot{q}_{1}, \dot{q}_{2}\right)=2 m_{2} q_{2} \dot{q}_{1} \dot{q}_{2} \\
& \boldsymbol{C}_{2}(\boldsymbol{q})=\left(\begin{array}{cc}
-2 m_{2} q_{2} & 0 \\
0 & 0
\end{array}\right) \quad \Rightarrow \quad c_{2}\left(q_{1}, \dot{q}_{1}\right)=-m_{2} q_{2} \dot{q}_{1}^{2} .
\end{aligned}
$$

The robot potential energy U is given by

$$
\begin{aligned}
U_{1} & =U_{10} \quad U_{2}=m_{2} g_{0} q_{2} \sin q_{1}+U_{20} \\
U & =U_{1}+U_{2}=m_{2} g_{0} q_{2} \sin q_{1}+U_{10}+U_{20} \\
& \Rightarrow \boldsymbol{g}(\boldsymbol{q})=\left(\frac{\partial U(\boldsymbol{q})}{\partial \boldsymbol{q}}\right)^{T}=\binom{m_{2} g_{0} q_{2} \cos q_{1}}{m_{2} g_{0} \sin q_{1}}=\binom{g_{1}\left(q_{1}, q_{2}\right)}{g_{2}\left(q_{1}\right)},
\end{aligned}
$$

with $g_{0}=9.81>0$.
The direct kinematics associated to the end-effector position of the RP robot is

$$
\boldsymbol{p}=\binom{p_{x}}{p_{y}}=\binom{\left(d_{2}+q_{2}\right) \cos q_{1}}{\left(d_{2}+q_{2}\right) \sin q_{1}},
$$

where $d_{2}>0$ is the constant length shown in Fig. 1. Being the task defined only in terms of the p_{y} component, it is

$$
\dot{p}_{y}=\left(\begin{array}{ll}
\left(d_{2}+q_{2}\right) \cos q_{1} & \sin q_{1}
\end{array}\right) \dot{\boldsymbol{q}}=\boldsymbol{J}(\boldsymbol{q}) \dot{\boldsymbol{q}}
$$

and then

$$
\begin{equation*}
\ddot{p}_{y}=\boldsymbol{J}(\boldsymbol{q}) \ddot{\boldsymbol{q}}+\dot{\boldsymbol{J}}(\boldsymbol{q}) \dot{\boldsymbol{q}}=\boldsymbol{J}(\boldsymbol{q}) \ddot{\boldsymbol{q}}+\left(\cos q_{1} \dot{q}_{2}-\left(d_{2}+q_{2}\right) \sin q_{1} \dot{q}_{1} \quad \cos q_{1} \dot{q}_{1}\right) \dot{\boldsymbol{q}} . \tag{2}
\end{equation*}
$$

Note that the task Jacobian \boldsymbol{J} is singular if and only if $\sin q_{1}=0$ and $q_{2}=-d_{2}$.
Replacing in (2) the accelerations $\ddot{\boldsymbol{q}}$ from (1) yields

$$
\ddot{p}_{y}=\boldsymbol{J}(\boldsymbol{q}) \boldsymbol{B}^{-1}(\boldsymbol{q})(\boldsymbol{\tau}-\boldsymbol{c}(\boldsymbol{q}, \dot{\boldsymbol{q}})-\boldsymbol{g}(\boldsymbol{q}))+\dot{\boldsymbol{J}}(\boldsymbol{q}) \dot{\boldsymbol{q}}
$$

Setting then $\ddot{p}_{y}=A$ and reorganizing terms, we obtain

$$
\boldsymbol{M}(\boldsymbol{q}) \boldsymbol{\tau}=A-\dot{\boldsymbol{J}}(\boldsymbol{q}) \dot{\boldsymbol{q}}+\boldsymbol{J}(\boldsymbol{q}) \boldsymbol{B}^{-1}(\boldsymbol{q})(\boldsymbol{c}(\boldsymbol{q}, \dot{\boldsymbol{q}})+\boldsymbol{g}(\boldsymbol{q}))=: d(\boldsymbol{q}, \dot{\boldsymbol{q}}),
$$

having defined also

$$
\boldsymbol{M}(\boldsymbol{q})=\boldsymbol{J}(\boldsymbol{q}) \boldsymbol{B}^{-1}(\boldsymbol{q})=\left(\begin{array}{cc}
\frac{\left(d_{2}+q_{2}\right) \cos q_{1}}{b_{11}\left(q_{2}\right)} & \frac{\sin q_{1}}{b_{22}}
\end{array}\right)
$$

At a generic robot state $(\boldsymbol{q}, \dot{\boldsymbol{q}})$, the question at hand is then formulated as a linear-quadratic optimization problem in the standard form

$$
\min \frac{1}{2}\|\boldsymbol{\tau}\|^{2}=\frac{1}{2}\left(\tau_{1}^{2}+\tau_{2}^{2}\right) \quad \text { s.t. } \quad \boldsymbol{M} \boldsymbol{\tau}=d
$$

The optimal solution is simply

$$
\begin{equation*}
\boldsymbol{\tau}^{*}=\boldsymbol{M}^{\#} d \tag{3}
\end{equation*}
$$

where all quantities have been already defined. In explicit terms, in case of full (row) rank \boldsymbol{M} we have ${ }^{1}$

$$
\boldsymbol{M}^{\#}=\boldsymbol{B}^{-1} \boldsymbol{J}^{T}\left(\boldsymbol{J} \boldsymbol{B}^{-2} \boldsymbol{J}^{T}\right)^{-1}
$$

In particular, out of the singularities of the 1×2 matrix \boldsymbol{M}, which coincide with those of the task Jacobian \boldsymbol{J}, the pseudoinverse of \boldsymbol{M} has the explicit expression

$$
\boldsymbol{M}^{\#}(\boldsymbol{q})=\frac{1}{\left(\frac{\left(d_{2}+q_{2}\right) \cos q_{1}}{b_{11}\left(q_{2}\right)}\right)^{2}+\left(\frac{\sin q_{1}}{b_{22}}\right)^{2}}\binom{\frac{\left(d_{2}+q_{2}\right) \cos q_{1}}{b_{11}\left(q_{2}\right)}}{\frac{\sin q_{1}}{b_{22}}}
$$

The optimal solution (3) implies that both joints/actuators are typically involved in this onedimensional task. Although in general the task could have been realized also by actuating only a single joint (the revolute or the prismatic one), the combination results in the minimum actuation effort.

It should be remarked that the norm of $\boldsymbol{\tau}$ has a dimensionality problem. In fact, the first actuation input is a torque (on the revolute joint) and the second is a force (on the prismatic joint), so that physical units are mixed in computing the norm. A way to handle this problem is to introduce a proper scaling in the objective function, i.e., considering a positive definite diagonal matrix $\boldsymbol{W}=\operatorname{diag}\{1, w\}>0$ and minimizing

$$
\frac{1}{2} \boldsymbol{\tau}^{T} \boldsymbol{W} \boldsymbol{\tau}=\frac{1}{2}\left(\tau_{1}^{2}+w \tau_{2}^{2}\right)
$$

[^0]where the scalar $w>0$ takes into account how costly a unit of torque is in comparison to a unit of force. The associated solution is then obtained by replacing the pseudoinverse of \boldsymbol{M} in (3) by its weighted pseudoinverse
$$
\boldsymbol{M}_{\boldsymbol{W}}^{\#}=\boldsymbol{W}^{-1} \boldsymbol{M}^{T}\left(\boldsymbol{M} \boldsymbol{W}^{-1} \boldsymbol{M}^{T}\right)^{-1}
$$

Finally, it is worth mentioning that the above local solution with minimum norm of the actuation inputs is prone to an internal build up of joint velocities, especially for long task trajectories. A countermeasure to this phenomenon is to choose a solution of the form

$$
\begin{equation*}
\boldsymbol{\tau}=\boldsymbol{M}^{\#} d+\left(\boldsymbol{I}-\boldsymbol{M}^{\#} \boldsymbol{M}\right) \boldsymbol{\tau}_{0} \tag{4}
\end{equation*}
$$

with $\boldsymbol{\tau}_{0}=-\boldsymbol{K}_{D} \dot{\boldsymbol{q}}$ and where \boldsymbol{K}_{D} is a diagonal, positive definite matrix. The additional torque $\boldsymbol{\tau}_{0}$ damps the joint velocity $\dot{\boldsymbol{q}}$, without affecting the execution of the task. It is also easy to see that (4) is the solution to the following modified linear-quadratic optimization problem

$$
\min \frac{1}{2}\left(\boldsymbol{\tau}-\boldsymbol{\tau}_{0}\right)^{T}\left(\boldsymbol{\tau}-\boldsymbol{\tau}_{0}\right) \quad \text { s.t. } \quad \boldsymbol{M} \boldsymbol{\tau}=d
$$

[^0]: ${ }^{1}$ Note also that in general $\boldsymbol{M}^{\#}=\left(\boldsymbol{J} \boldsymbol{B}^{-1}\right)^{\#} \neq \boldsymbol{B} \boldsymbol{J}^{\#}$. The equality holds if $\boldsymbol{B}=b \cdot \boldsymbol{I}$, for a scalar b.

