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Impedance control

n imposes a desired dynamic behavior to the interaction between  
robot end-effector and environment

n the desired performance is specified through a generalized dynamic 
impedance, namely a complete set of mass-spring-damper equations 
(typically chosen as linear and decoupled, but also nonlinear)

n a model describing how reaction forces are generated in association 
with environment deformation is not explicitly required

n suited for tasks in which contact forces should be “kept small”, while 
their accurate regulation is not mandatory

n since a control loop based on force error is missing, contact forces 
are only indirectly assigned by controlling position

n the choice of a specific stiffness in the impedance model along a 
Cartesian direction results in a trade-off between contact forces and 
position accuracy in that direction
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with              

generalized forces performing work on �̇�

𝑀 𝑞 �̈� + 𝑆 𝑞, �̇� �̇� + 𝑔 𝑞 = 𝑢 + 𝐽!" 𝑞 𝐹!
𝐹! = 𝑇!"# 𝜙 𝐹

Dynamic model of a robot in contact
generalized

Cartesian force
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𝑀 𝑞 �̈� + 𝑆 𝑞, �̇� �̇� + 𝑔 𝑞 = 𝑢 + 𝐽" 𝑞 𝐹𝑞 ∈ ℝ!

forces

torques

performing work on

“geometric”
Jacobian

angular velocity derivative of
Euler angles

“analytic”
Jacobian 

𝐹 = 𝑓
𝜇 ∈ ℝ$

linear velocity

𝑉 = 𝑣
𝜔 = 𝐽 𝑞 �̇� ≠ �̇� =

�̇�
�̇� = 𝐽!(𝑞)�̇�

direct kinematics

𝐽! 𝑞 =
𝜕𝑟(𝑞)
𝜕𝑞

= 𝑇! 𝜙 𝐽(𝑞) �̇� = 𝑇! 𝜙 𝑉



Contact forces vs. constraint forces
whiteboard…
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𝑀 𝑞 �̈� + ⋯ = 𝑢 + 𝐽# 𝑞 𝐹

𝑝% 𝑞 = 𝑘

𝑥

every possible force 𝐹
due to any contact

𝑀 𝑞 �̈� + ⋯ = 𝑢 + 𝐴# 𝑞 𝜆

𝑥

reaction force intensity λ
only due to the constraint

𝑝 =
𝑝%(𝑞)
𝑝&(𝑞)

= 𝑟(𝑞)

�̇� =
𝜕𝑟(𝑞)
𝜕𝑞 �̇� = 𝐽(𝑞)�̇�

�̇�% = 1 0 𝐽 𝑞 �̇� = 𝐴 𝑞 �̇� = 0

𝐴# 𝑞 𝜆 = 𝐽# 𝑞 1
0 𝜆

⇒ 𝐹% = −𝜆⇒ 𝐹 =
𝐹%
𝐹&

𝜆 > 0 𝜆 < 0

= 𝐽# 𝑞 −𝐹%
0



Dynamic model in Cartesian coordinates

... and the usual structural properties
§ 𝑀! > 0, if 𝐽! is non-singular

§ �̇�! − 2𝑆! is skew-symmetric, if �̇� − 2𝑆 satisfies the 
same property

§ the Cartesian dynamic model of the robot can be linearly 
parameterized in terms of a set of dynamic coefficients
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𝑀! 𝑞 �̈� + 𝑆! 𝑞, �̇� �̇� + 𝑔! 𝑞 = 𝐽!#" 𝑞 𝑢 + 𝐹!
with
𝑀! 𝑞 = 𝐽!"# 𝑞 𝑀 𝑞 𝐽!"' 𝑞 = 𝐽! 𝑞 𝑀"' 𝑞 𝐽!#(𝑞) "'

𝑆! 𝑞, �̇� = 𝐽!"# 𝑞 𝑆 𝑞, �̇� 𝐽!"' 𝑞 − 𝑀!(𝑞) ̇𝐽!(𝑞)𝐽!"'(𝑞)

𝑔! 𝑞 = 𝐽!"#(𝑞)𝑔(𝑞)

assuming
𝑛 = 𝑚



Design of the control law

1. feedback linearization in the Cartesian space (with force measure)

2. imposition of a dynamic impedance model

designed in two steps:

closed-loop system

is realized by choosing

most of the times
it is “decoupled”

(diagonal matrices)

Note: 𝑟"(𝑡) is the desired motion, which typically “slightly penetrates” 
inside the compliant environment (inducing contact forces)...
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𝑢 = 𝐽!#(𝑞) 𝑀! 𝑞 𝑎 + 𝑆! 𝑞, �̇� �̇� + 𝑔! 𝑞 − 𝐹!

𝑀$ �̈� − �̈�( + 𝐷$ �̇� − �̇�( + 𝐾$ 𝑟 − 𝑟( = 𝐹!

desired (apparent)
inertia (> 0)

desired
damping (≥ 0)

desired
stiffness (> 0)

external forces
from the environment

�̈� = 𝑎

𝑎 = �̈�( +𝑀$
"' 𝐷$ �̇�( − �̇� + 𝐾$ 𝑟( − 𝑟 + 𝐹!



Examples of desired reference 𝑟𝑑
in impedance/compliance control

the desired motion 𝒓𝒅(𝒕) is slightly inside
the environment (keeping thus contact)
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𝒓𝒅(𝒕)

𝒓𝒆

robot in grinding task robot writing on a surface

𝒓𝒅(𝒕)

𝑀$ �̈� − �̈�( + 𝐷$ �̇� − �̇�( + 𝐾$ 𝑟 − 𝑟( = 𝐹!



Examples of desired reference 𝑥𝑑
in impedance/compliance control
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constant desired pose 𝒓𝒅 is the free Cartesian 
rest position in a human-robot interaction task

𝒓𝒅

KUKA iiwa robot with human operator KUKA LWR robot in pHRI (collaboration)

𝒓𝒅

𝑀$ �̈� − �̈�( + 𝐷$ �̇� − �̇�( + 𝐾$ 𝑟 − 𝑟( = 𝐹!



Control law in joint coordinates

matrix weighting the measured contact forces

§ while the control design is based on dynamic analysis and 
desired (impedance) behavior described in the Cartesian space, 
the final control implementation is always at the robot joint level

§ the following identity holds for the term involving contact forces

which eliminates from the control law also the appearance of the 
last remaining Cartesian quantity (the Cartesian inertia matrix)

substituting and simplifying…
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𝑢 = 𝑀 𝑞 𝐽!"'(𝑞)K�̈�( − ̇𝐽! 𝑞 �̇� + 𝑀$
"' }𝐷$ �̇�( − �̇� + 𝐾$ 𝑟( − 𝑟

+ 𝑆 𝑞, �̇� �̇� + 𝑔 𝑞 + 𝐽!#(𝑞) 𝑀! 𝑞 𝑀$
"' − 𝐼 𝐹!

𝐽!# 𝑞 𝑀! 𝑞 𝑀$
"' − 𝐼 𝐹! = 𝑀 𝑞 𝐽!"'(𝑞)𝑀$

"' − 𝐽!# 𝑞 𝐹!



Choice of the impedance model

n adapt/match to the dynamic characteristics of the environment (in 
particular, of its estimated stiffness) in a complementary way

n avoid large impact forces due to uncertain geometric characteristics 
(position, orientation) of the environment

n mimic the behavior of a human arm
è fast and stiff in “free” motion, slow and compliant in “guarded” motion 

n large 𝑀$,* and small 𝐾$,* in Cartesian directions where contact is 
foreseen (➔ low contact forces)

n large 𝐾$,* and small 𝑀$,* in Cartesian directions that are supposed 
to be free (➔ good tracking of desired motion trajectory)

n damping coefficients 𝐷$,* are used then to shape transient behaviors

rationale ...
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Human arm behavior
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hard environment

expected free motion
= stiff motion control 

expected contact motion
= soft motion control 

in the selected 𝑖-th Cartesian direction:
the stiffer is the environment, the softer is the chosen model stiffness 𝐾$,*



Experiments with impedance control
human interaction with a Panda robot
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LRS – RPTU
Kaiserlautern

7R Franka Emika Panda robot 3 clips of the same video

high rotational 𝐾#,%
low 𝐾#,&
(compliant in position)

high translational 𝐾#,&
low 𝐾#,%

(compliant in orientation)

trajectory tracking with
physical interaction

(uniformly compliant)



A notable simplification - 1

choose the apparent inertia equal to the natural Cartesian inertia of the robot

this is a pure motion control law applied also during interaction,
but designed so as to keep limited contact forces at the end-effector level

(as before, 𝐾𝑚 is chosen as a function of the expected environment stiffness)
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then, the control law becomes

WITHOUT contact force feedback! (a F/T sensor is no longer needed…)

𝑢 = 𝑀 𝑞 𝐽!"'(𝑞)K�̈�( − ̇𝐽! 𝑞 }�̇� + 𝑆 𝑞, �̇� �̇� + 𝑔 𝑞
+ 𝐽!#(𝑞) 𝐷$ �̇�( − �̇� + 𝐾$ 𝑟( − 𝑟

𝑀$ = 𝑀! 𝑞 = 𝐽!"# 𝑞 𝑀 𝑞 𝐽!"' 𝑞 = 𝐽! 𝑞 𝑀"' 𝑞 𝐽!#(𝑞) "'



A notable simplification - 2

technical issue: if the impedance model (now, nonlinear) is still supposed to 
represent a real mechanical system, then in correspondence to a desired
non-constant inertia (𝑀!(𝑞)) there should be Coriolis and centrifugal terms...

§ guarantee of asymptotic convergence to zero tracking error (on 𝑟𝑑(𝑡))
when 𝐹! = 0 (no contact situation) ⇒ Lyapunov + skew-symmetry of �̇�# − 2𝑆#

§ further simplifications when 𝑟𝑑 is constant
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nonlinear impedance model (“only” gravity terms disappear)

𝑀!(𝑞) �̈� − �̈�( + 𝑆! 𝑞, �̇� + 𝐷$ �̇� − �̇�( + 𝐾$ 𝑟 − 𝑟( = 𝐹!

redoing computations, the control law becomes

which is indeed slightly more complex, but has the following advantages:

𝑢 = 𝑀 𝑞 𝐽!"'(𝑞)K�̈�( − ̇𝐽! 𝑞 }𝐽!"' 𝑞 �̇�( + 𝑆 𝑞, �̇� 𝐽!"'(𝑞)�̇�( + 𝑔 𝑞
+ 𝐽!#(𝑞) 𝐷$ �̇�( − �̇� + 𝐾$ 𝑟( − 𝑟



Cartesian regulation revisited 
(without contact, 𝐹! = 0)

when 𝑟𝑑 is constant (�̇�( = 0, �̈�( = 0), from the previous expression we get 
the control law 

Cartesian PD control with gravity cancellation…

when 𝐹! = 0 (absence of contact), we know already that this control law 
ensures asymptotic stability of 𝑟(, provided 𝐽!(𝑞) has full rank

proof
(alternative) Lyapunov candidate

using skew-symmetry of �̇�# − 2𝑆# and 𝑔# = 𝐽#$%𝑔

(★)
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𝑢 = 𝑔 𝑞 + 𝐽!# 𝑞 𝐾$ 𝑟( − 𝑟 − 𝐷$�̇�

𝑉& =
1
2 �̇�

%𝑀# 𝑞 �̇� +
1
2 𝑟" − 𝑟 %𝐾' 𝑟" − 𝑟

�̇�& = �̇�%𝑀# 𝑞 �̈� +
1
2 �̇�

%�̇�# 𝑞 �̇� − �̇�%𝐾' 𝑟" − 𝑟 = ⋯ = −�̇�%𝐷' �̇� ≤ 0



Cartesian stiffness control
(with contact, 𝐹! ≠ 0)

when 𝐹! ≠ 0, convergence to 𝑟( is not assured 
(it may not even be a closed-loop equilibrium…)

§ for analysis, assume an elastic contact model for the environment

𝐹! = 𝐾+(𝑟+ − 𝑟) with stiffness 𝐾+ ≥ 0 and rest position 𝑟+
§ closed-loop system behavior

Lyapunov candidate
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𝑉( =
1
2 �̇�

%𝑀# 𝑞 �̇� +
1
2 𝑟" − 𝑟 %𝐾' 𝑟" − 𝑟 +

1
2 𝑟) − 𝑟 %𝐾) 𝑟) − 𝑟

= 𝑉& +
1
2
𝑟) − 𝑟 %𝐾) 𝑟) − 𝑟

�̇�( = �̇�%𝑀# 𝑞 �̈� +
1
2 �̇�

%�̇�# 𝑞 �̇� − �̇�%𝐾' 𝑟" − 𝑟 − �̇�%𝐾) 𝑟) − 𝑟

= ⋯ = −�̇�%𝐷' �̇� + �̇�%(𝐹# − 𝐾) 𝑟) − 𝑟 ) = −�̇�%𝐷' �̇� ≤ 0



Stability analysis (with 𝐹! ≠ 0)

when �̇� = �̈� = 0, at a closed-loop system equilibrium it is
𝐾'(𝑟" − 𝑟) + 𝐾)(𝑟) − 𝑟) = 0

𝑟 = 𝐾$ + 𝐾+ "' 𝐾$𝑟( + 𝐾+𝑟+ =: 𝑟,

𝑟+ for 𝐾+ ≫ 𝐾$ (rigid environment)

𝑟( for 𝐾$ ≫ 𝐾+ (rigid controller)
𝑟, ≈

(check that the Lyapunov candidate 𝑉2 has in fact its minimum in 𝑟,!)

Note: the Cartesian stiffness control law (★) is often
called compliance control in the literature
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LaSalle        𝑟𝐸 asymptotically stable equilibrium

which has the unique solution

𝐹! = 𝐾+(𝑟+ − 𝑟,)

at steady state
the contact force is



Equilibrium condition
whiteboard…

𝑟, = 𝐾$ + 𝐾+ "' 𝐾$𝑟( + 𝐾+𝑟+
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𝐹* = 𝐾' 𝑥" − 𝑥) > 0

𝐾#

𝑥 = 𝑥' 𝑥(

𝐾'

𝑚

𝑚�̈� = 𝐹* − 𝐷'�̇�

𝐾#

𝑥' 𝑥(

𝐾'
𝑚

𝑥

𝐾#

𝑥' 𝑥(

𝐾'
𝑚

𝑥 = 𝑥)

𝐹* = 𝐾' 𝑥" − 𝑥 > 0
𝑚�̈� = 𝐹* + 𝐹# − 𝐷'�̇�

𝐹# = −𝐾) 𝑥 − 𝑥) < 0

at the initial contact during the transient at steady-state (equilibrium)

𝐹* = 𝐾' 𝑥" − 𝑥+ > 0
0 = 𝐹* + 𝐹#

𝐹# = −𝐾) 𝑥+ − 𝑥) < 0

𝑥+ =
𝐾'𝑥" + 𝐾)𝑥)
𝐾' + 𝐾)

𝐹* ≠ 𝐹#

generic
mass

part of the Cartesian
control force

let 𝑟 = 𝑥 ∈ ℝ



Active equivalent of RCC device
§ displacements from the desired position 𝑟( are small, namely

§ 𝑔(𝑞) = 0 (gravity compensated), 𝐷$ = 0 (or �̇� ≈ 0, i.e., small enough)
(𝑟( − 𝑟) ≈ 𝐽!(𝑞)(𝑞( − 𝑞)

IF

constant Cartesian-level stiffness 𝐾$
(or compliance 𝐶$ = 1/𝐾$)

corresponds to 
variable joint-level stiffness 𝐾(𝑞)

(or compliance = 𝐶 𝑞 )
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THEN 𝑢 = 𝐽!# 𝑞 𝐾$ 𝐽! 𝑞 𝑞( − 𝑞 = 𝐾 𝑞 (𝑞( − 𝑞)

∆𝑟 𝐾' 𝐹

∆𝑞

𝐽#(𝑞) 𝐽#%(𝑞)

𝑢𝐾(𝑞)

𝐶(𝑟)
∆𝑟 𝐹

𝐽#$&(𝑞) 𝐽#$%(𝑞)

∆𝑞 𝑢𝐶'

… and vice versa

this is the ‘‘active’’ counterpart of a 
Remote Center of Compliance (RCC) device

𝐶' = ⁄1 𝐾'
∆𝑟 𝐹

𝐽#$&(𝑞) 𝐽#$%(𝑞)

∆𝑞 𝑢
𝐶(𝑞)



Admittance control
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§ in some cases, we don’t have access to low-level robot torque (or 
motor current) commands ⇒ closed control architecture

§ for handling the interaction with the environment, one uses often 
admittance control: contact forces 𝐹% ⇒ velocity commands �̇�

§ implementation (with compliant matrices 𝐶)
§ in joint space or in Cartesian (task) space – with singularity issues …
§ at the velocity or incremental position level

𝐹" ⟶ �̇� = 𝐶!𝐹" ⟶ �̇� = 𝐽#$(𝑞)𝐶!𝐹"

𝑢" = 𝐽%(𝑞)𝐹" ⟶ �̇� = 𝐶&𝑢" ⟶ �̇� = 𝐶& 𝐽%(𝑞)𝐹"
↕
∆𝑞 (to be added to the current 𝑞)

↕
𝐽#(𝑞)(in case of redundancy)

𝐶& ≥ 0

𝐶! ≥ 0



Experiments with admittance control
human interaction with a KUKA LWR robot
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7R KUKA LWR4+ robot

video

ICRA 2016, University of Patras Sep 2013, DIAG Laboratory of Robotics

handling of task singularities
through performance constraints

admittance control at any contact point
without using a force/torque sensor

video

𝐾!


