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Regulation of robot Cartesian pose

n “PD +” type control for regulation problems
n proportional to the Cartesian pose error, with a derivative term  

(on velocity) + cancellation/compensation of gravity in joint space 
n robot

n dynamics
n kinematics

n goal: asymptotic stabilization of the end-effector pose

Note: if 𝑚 = 𝑛, then 𝑞̇ = 0 ⇔ 𝑝̇ = 0 up to singularities
n if 𝑚 < 𝑛, then the goal is not uniquely associated 

to a complete robot state: 𝑛 −𝑚 joint
coordinates are missing…

dimension of spaces
joint = 𝑛

Cartesian = 𝑚
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𝑀 𝑞 𝑞̈ + 𝑆 𝑞, 𝑞̇ 𝑞̇ + 𝑔 𝑞 = 𝑢
𝑝 = 𝑓 𝑞 ⟶ 𝑝̇ = 𝐽 𝑞 𝑞̇

𝑝 = 𝑝!, 𝑞̇ = 𝑞̇! = 0 ⟶ 𝑝̇! = 0



A Cartesian regulation law
𝐾! , 𝐾" > 0

(symmetric)
(*)
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𝑢 = 𝐽" 𝑞 𝐾# 𝑝! − 𝑝 − 𝐾$𝑞̇ + 𝑔(𝑞)

under the control law (*), the robot state will converge asymptotically

to the set

Theorem

𝐴 = {𝑞̇ = 0, 𝑞: 𝐾# 𝑝! − 𝑓 𝑞 ∈ 𝑁 𝐽" 𝑞 )
⊇ {𝑞̇ = 0, 𝑞: 𝑓 𝑞 = 𝑝!}

Proof

define 𝑒! = 𝑝# − 𝑝 (Cartesian error) and the associated
Lyapunov-like candidate function

with 𝑉 = 0
𝑉 = 0

𝐴

⟺ (𝑞, 𝑞̇) ∈ {𝑞̇ = 0, 𝑞: 𝑓 𝑞 = 𝑝#} ⊆ 𝐴

𝑉 = $
% 𝑞̇

&𝑀 𝑞 𝑞̇ + $
% 𝑒'

&𝐾!𝑒!



Proof (cont)

differentiating
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𝑉 = !
" 𝑞̇

#𝑀 𝑞 𝑞̇ + !
"𝑒$

#𝐾%𝑒% ≥ 0

in this situation, the closed-loop equations become
𝑀 𝑞 𝑞̈ + 𝑔 𝑞 = 𝐽# 𝑞 𝐾%𝑒% +𝑔(𝑞) 𝑞̈ = 𝑀&!(𝑞)𝐽# 𝑞 𝐾%𝑒%

by applying LaSalle theorem, the thesis follows

𝑞̈ = 0 ⟺ 𝐾%𝑒% ∈ 𝑁 𝐽#(𝑞)

𝑉̇ = 𝑞̇" 𝑀𝑞̈ + %
& 𝑀̇𝑞̇ − 𝑒'"𝐾#𝑝̇

with 𝑉̇ = 0 ⟺ 𝑞̇ = 0
= −𝑞̇"𝐾$𝑞̇ ≤ 0

= 𝑞̇" 𝑢 − 𝑆𝑞̇ − 𝑔 + !
" 𝑀̇𝑞̇ −𝑒'"𝐾#𝑝̇

= 𝑞̇" 𝐽"𝐾#𝑒# −𝐾$𝑞̇ + 𝑔 − 𝑔 − 𝑒'"𝐾#𝐽𝑞̇



Corollary

for a given initial state (𝑞 0 , 𝑞̇(0)), if the robot does not 
encounter any singularity of 𝐽𝑇(𝑞) (configurations where 
𝜌 𝐽" < 𝑚 ≤ 𝑛) during its motion, then there is asymptotic 
stabilization to one single state (𝑚 = 𝑛) or to a set of 
states (𝑚 < 𝑛) such that

Note: singular configurations 𝑞 of 𝐽𝑇(𝑞) coincide with those of 𝐽(𝑞)
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𝑒! = 0, 𝑞̇ = 0



A possible variant for regulation
“all Cartesian” PD control + gravity cancellation in joint space

𝐾! , 𝐾" > 0
(symmetric)

(**)

mechanical
interpretation

𝑝𝑑 𝑝𝑑
(**)(*)

𝐽𝑇 transforms the “virtual” elastic, for (*), or visco-elastic, for (**), 
force/torque acting on the end-effector into control torques at the joints
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𝑢 = 𝐽" 𝑞 𝐾# 𝑝! − 𝑝 − 𝐾$𝑝̇ + 𝑔(𝑞)



from the dynamic model
𝑦 = 𝑓 𝑞
𝑦̇ = 𝐽 𝑞 𝑞̇
𝑦̈ = 𝐽 𝑞 𝑞̈ + ̇𝐽 𝑞 𝑞̇
= 𝐽 𝑞 𝑀&! 𝑞 𝑢 − 𝑐 𝑞, 𝑞̇ − 𝑔 𝑞 + ̇𝐽 𝑞 𝑞̇

Feedback linearization in Cartesian space
robot

output 𝑦 = 𝑝, Cartesian
position/orientation assume: 𝑚 = 𝑛

algorithm

Theorem
for a non-redundant robot, it is possible to exactly linearize and  
decouple the dynamic behavior at the Cartesian level if and only if

differentiate the output(s) as many times as needed 
up to the appearance of (at least one of) the input torque(s), 
then verify if it is possible to solve for the input = “inversion”
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𝑀 𝑞 𝑞̈ + 𝑐 𝑞, 𝑞̇ + 𝑔 𝑞 = 𝑢

𝑝 = 𝑓(𝑞)

det 𝐽(𝑞) ≠ 0

uniform
“relative degree’’ 

𝜌 = 2
for all outputs



Feedback linearization in Cartesian space 
(in the right coordinates!)

control law

𝑦̈ = 𝑝̈ = 𝐽 𝑞 𝑀&! 𝑞 𝑢 − 𝑐 𝑞, 𝑞̇ − 𝑔 𝑞 + ̇𝐽 𝑞 𝑞̇ = 𝑎

𝑝, 𝑝̇ are the so-called “linearizing” coordinates
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𝑢 = 𝑀 𝑞 𝐽&! 𝑞 𝑎 + 𝑐 𝑞, 𝑞̇ + 𝑔 𝑞 −𝑀 𝑞 𝐽&! 𝑞 ̇𝐽 𝑞 𝑞̇

purely
kinematic
equations

(but still nonlinear and coupled!!)

𝑞̈ = 𝐽&! 𝑞 𝑎 − 𝐽&! 𝑞 ̇𝐽 𝑞 𝑞̇

= 𝛽 𝑞 𝑎 + 𝛼(𝑞, 𝑞̇)

closed-loop equations (in the joint space)

𝑀𝑞̈ + 𝑐 + 𝑔 = 𝑀𝐽&! 𝑎 − ̇𝐽𝑞̇ + 𝑐 + 𝑔𝑀&! ∗



articulated robot
inertia depends on 𝑞 and is

variable in different Cartesian directions

Physical interpretation

𝑞1, 𝑢1

𝑞2, 𝑢2

𝑞3, 𝑢3

𝑥

𝑦

𝑧

unitary (or arbitrary) mass
same constant behavior

in all Cartesian directions
𝑥

𝑦

𝑧

𝑎𝑥

𝑎𝑦

𝑎𝑧
𝐹

when a control force 𝐹 is applied at the end-effector 
§ the uncontrolled robot will accelerate with 𝑝̈ in a different direction
§ the mass accelerates in the same direction of the applied force 𝐹
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𝑢 = 𝛼 𝑞, 𝑞̇
+ 𝛽 𝑞 𝑎

𝑝̈

𝐹

𝑝̈

𝑎 =
1
𝑚
𝐹

𝑀(𝑞) 𝑚 𝑝'(𝑡)
in static conditions

and gravity balanced:
𝑝̈!𝐹 > 0



Alternative derivation
in purely Cartesian terms

the previous exact linearizing and decoupling law can be rewritten 
in Cartesian terms using a control force/torque 𝐹

joint torque 𝑢 is moved to the Cartesian space as 𝐹 = 𝐽&#(𝑞)𝑢 (for𝑚 = 𝑛)
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this is the feedback linearization law 
applied to the Cartesian dynamic 
model of the robot

𝑢 = 𝑀 𝑞 𝐽&! 𝑞 𝑎 + 𝑐 𝑞, 𝑞̇ −𝑀 𝑞 𝐽&! 𝑞 ̇𝐽 𝑞 𝑞̇ + 𝑔 𝑞

Cartesian inertia = 𝐽𝑀&!𝐽# &! = 𝑀$(𝑝)
Cartesian Coriolis/centrifugal terms

Cartesian gravity

𝐹 = 𝐽"#𝑀𝐽"$ 𝑎
+ 𝐽"#𝑐 − 𝐽"#𝑀𝐽"$ ̇𝐽𝑞̇
+ 𝐽"#𝑔

= 𝑀%𝑎 + 𝑐% + 𝑔%

𝑀' 𝑝 𝑝̈ + 𝑐' 𝑝, 𝑝̇ + 𝑔' 𝑝 = 𝐹

𝑝̈ = 𝑎



Remarks - 1

n the design of a Cartesian trajectory tracking control is completed 
by stabilizing the tracking error in the 𝑚 independent chains of 
double integrators, i.e., by setting

n the transient behavior of the Cartesian error along a desired 
trajectory is exponentially stable (with arbitrary eigenvalues 
assigned by choosing the diagonal gains of 𝐾𝑃, 𝐾$)

n in redundant robots (𝑚 < 𝑛), by replacing 𝑀𝐽/% = 𝐽𝑀/% /% in 
the control law with some (weighted) pseudoinverse 𝐽𝑀/%

0
# , 

one still obtains input-output decoupling and linearization, but 
not exact linearization of the whole state dynamics 
n there is an additional internal dynamics left of dimension 𝑛 −𝑚
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𝑖 = 1, … ,𝑚

scalars
𝐾𝑃𝑖 > 0, 𝐾"- > 0𝑎5 = 𝑝̈!5 +𝐾$5 𝑝̇!5 − 𝑝̇5 +𝐾#5 𝑝!5 − 𝑝5



More on the redundant case …
n suppose 𝑚 < 𝑛, but with a Jacobian 𝐽 of full rank 𝑚
n let the control law (with null-space torque term 𝑢6) be defined as
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𝑢 = 𝐽 𝑞 𝑀/%(𝑞) 0
# 𝑎 − ̇𝐽(𝑞)𝑞̇ + 𝐽 𝑞 𝑀/% 𝑞 𝑐 𝑞, 𝑞̇ + 𝑔 𝑞

+ 𝐼 − 𝐽 𝑞 𝑀/% 𝑞 0
# 𝐽 𝑞 𝑀/%(𝑞) 𝑢6

where 𝐽𝑀/%
0
# = 𝑊/%𝑀/%𝐽" 𝐽𝑀/%𝑊/%𝑀/%𝐽" /%

n three standard choices for 𝑊 > 0
𝑊 = 𝐼 ⟹ 𝐽𝑀/% #= 𝑀/%𝐽" 𝐽𝑀/&𝐽" /%

𝑊 = 𝑀/% ⟹ 𝐽𝑀/%
7$!
# = 𝐽" 𝐽𝑀/%𝐽" /%

𝑊 = 𝑀/& ⟹ 𝐽𝑀/%
7$"
# = 𝑀 𝐽" 𝐽 𝐽" /% = 𝑀𝐽#

n all give the same 𝑝̈ = 𝑎, with 𝑢6 available for null-space control

each associated 
control torque
optimizes a

different criterion
(see the slides on
redundant robots) 



Remarks - 2 

n the Cartesian pose/velocity can either be directly measured by 
external sensors (cameras) or computed through the direct and 
differential kinematics of the robot arm

n when applied to the case 𝑝𝑑 = constant (regulation task), the 
control law becomes

which is computationally more expensive than a control law 
designed directly for regulation, such as the previous laws (*)
or (**), but keeps the additional property of obtaining an 
exponentially stable transient error
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𝑢 = 𝑀 𝑞 𝐽.$ 𝑞 𝐾!𝑒! − 𝐾"𝐽 𝑞 𝑞̇ + 𝑐 𝑞, 𝑞̇ + 𝑔 𝑞 − 𝑀(𝑞)𝐽.$(𝑞) ̇𝐽(𝑞)𝑞̇



Conclusions
n most of the control laws presented in the joint space 

(i.e., driven by a joint error) can be translated with 
relative ease to the Cartesian space, e.g. 
n regulation with constant gravity compensation
n adaptive regulation
n robust control for trajectory tracking
n adaptive control for trajectory tracking

n the main issues are related to
n kinematic singularities, both for the Jacobian transpose and 

the Jacobian inverse control laws: suitable modifications are 
needed to obtain singularity robustness

n kinematic redundancy (𝑚 < 𝑛): use of a stabilizing null-space 
torque control is needed for the extra 𝑛 −𝑚 generalized 
coordinates (locally, 𝑛 −𝑚 joint variables)
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