Robotics 2

Adaptive Trajectory Control

Prof. Alessandro De Luca

Dipartimento di ingegneria Informatica
Automatica e gestionale Antonio Ruberti

Motivation and approach

- need of adaptation in robot motion control laws
- large uncertainty on the robot dynamic parameters
- poor knowledge of the inertial payload
- characteristics of direct adaptive control
- direct aim is to bring to zero the state trajectory error, i.e., position and velocity errors
- no need to estimate on-line the true values of the dynamic coefficients of the robot (as opposed to indirect adaptive control)
- main tool and methodology
- linear parametrization of robot dynamics
- nonlinear control law of the dynamic type (the controller has its own 'states')

Summary of robot parameters

- parameters assumed to be known
- kinematic description based, e.g., on Denavit-Hartenberg parameters ($\left\{\alpha_{i}, d_{i}, a_{i}, i=1, \ldots, N\right\}$ in case of all revolute joints), including link lengths (kinematic calibration)
- uncertain parameters that can be identified off-line
- masses m_{i}, positions $r_{c i}$ of CoMs, and inertia matrices I_{i} of each link, appearing in combinations (dynamic coefficients) $\quad \Rightarrow p \ll 10 \times N$
- parameters that are (slowly) varying during operation
- viscous $F_{V i}$, dry $F_{D i}$, and stiction $F_{S i}$ friction at each joint $\Rightarrow 1 \div 3 \times N$
- unknown and abruptly changing parameters
- mass, CoM, inertia matrix of the payload (w.r.t. the tool center point)

when a payload is firmly attached to the robot E-E, only the 10 parameters of the last link are modified, influencing however most part of the robot dynamics

Goal of adaptive control

- given a twice-differentiable desired joint trajectory $q_{d}(t)$
- with known desired velocity $\dot{q}_{d}(t)$ and acceleration $\ddot{q}_{d}(t)$
- possibly obtained by kinematic inversion + joint interpolation
- execute this trajectory under large dynamic uncertainties
- with a trajectory tracking error vanishing asymptotically

$$
e=q_{d}-q \longrightarrow 0 \quad \dot{e}=\dot{q}_{d}-\dot{q} \longrightarrow 0
$$

- guaranteeing global stability, no matter how far are the initial estimates of the unknown/uncertain parameters from their true values and how large is the initial trajectory error
- identification is not of particular concern: in general, the estimates of dynamic coefficients will not converge to the true ones!
- if this convergence is a specific extra requirement, then one should use (more complex) indirect adaptive schemes

Linear parameterization

$$
M(q) \ddot{q}+S(q, \dot{q}) \dot{q}+g(q)+F_{V} \dot{q}=u
$$

- there exists always a (p-dimensional) vector a of dynamic coefficients, so that the robot model takes the linear form

$$
Y(q, \dot{q}, \ddot{q}) a=u
$$

- vector a contains only unknown or uncertain coefficients
- each component of a is in general a combination of the robot physical parameters (not necessarily all of them)
- the model regression matrix Y depends linearly on \ddot{q}, quadratically on \dot{q} (for the terms related to kinetic energy), and nonlinearly (trigonometrically) on q

Trajectory controllers based on model estimates

- inverse dynamics feedforward (FFW) + PD (linear) control

$$
u=\underbrace{\widehat{M}\left(q_{d}\right) \ddot{q}_{d}+\hat{S}\left(q_{d}, \dot{q}_{d}\right) \dot{q}_{d}+\hat{g}\left(q_{d}\right)+\hat{F}_{V} \dot{q}_{d}}_{\hat{u}_{d}}+K_{P} e+K_{D} \dot{e}
$$

- (nonlinear) control based on feedback linearization (FBL)

$$
u=\widehat{M}(q)\left(\ddot{q}_{d}+K_{P} e+K_{D} \dot{e}\right)+\hat{S}(q, \dot{q}) \dot{q}+\hat{g}(q)+\hat{F}_{V} \dot{q}
$$

$$
\widehat{M}, \hat{S}, \hat{g}, \hat{F}_{V} \quad \Leftrightarrow \quad \text { estimate } \hat{a}
$$

- approximate estimates of dynamic coefficients may lead to instability with FBL due to temporary 'non-positive' PD gains (e.g., $\widehat{M}(q) K_{P}<0$!)
- not easy to turn these laws in adaptive schemes: inertia inversion/use of acceleration (FBL); bounds on PD gains (FFW)

A control law more easily made 'adaptive'

- nonlinear trajectory tracking control (without cancellations) having global asymptotic stabilization properties

$$
u=\widehat{M}(q) \ddot{q}_{d}+\hat{S}(q, \dot{q}) \dot{q}_{d}+\hat{g}(q)+\hat{F}_{V} \dot{q}_{d}+K_{P} e+K_{D} \dot{e}
$$

- a natural adaptive version would require ...

$$
\dot{\hat{a}}=\text { designing a suitable update law }
$$

(in continuous time)

- without extra assumptions, it can be shown that joint velocities become eventually "clamped" to those of the desired trajectory (zero velocity error), but a residual position error may be left
- idea: on-line modification with a reference velocity

$$
\dot{q}_{d} \quad \rightarrow \quad \dot{q}_{r}=\dot{q}_{d}+\Lambda\left(q_{d}-q\right) \quad \Lambda>0
$$

typically, $\Lambda=K_{D}^{-1} K_{P}$ (all matrices will be chosen diagonal)

Intuitive interpretation of \dot{q}_{r}

- elementary case
- a mass 'lagging behind' a mobile reference $(e>0)$ at constant speed

\Rightarrow 'enhanced' velocity error $s=\dot{q}_{r}-\dot{q}>\dot{q}_{d}-\dot{q}=\dot{e}$

$$
u=K_{D} s=K_{D}\left(\dot{q}_{r}-\dot{q}\right)=K_{D}\left(\dot{q}_{d}+\Lambda e-\dot{q}\right)=K_{D} \dot{e}+\underbrace{K_{D} \Lambda}_{K_{P}} e
$$

- a mass 'leading in front' of its mobile reference $(e<0)$
\Rightarrow in a symmetric way, a 'reduced' velocity error will appear ($s<\dot{e}$)

Adaptive control law design

- substituting $\dot{q}_{r}=\dot{q}_{d}+\Lambda e, \ddot{q}_{r}=\ddot{q}_{d}+\Lambda \dot{e}$ in the previous nonlinear controller for trajectory tracking

$$
\begin{aligned}
u & =\widehat{M}(q) \ddot{q}_{r}+\hat{S}(q, \dot{q}) \dot{q}_{r}+\hat{g}(q)+\hat{F}_{V} \dot{q}_{r}+K_{P} e+K_{D} \dot{e} \\
& =Y\left(q, \dot{q}, \dot{q}_{r}, \ddot{q}_{r}\right) \hat{a}+K_{P} e+K_{D} \dot{e}
\end{aligned}
$$

dynamic parameterization of
PD stabilization
the control law using current estimates (diagonal matrices, >0) (note here the 4 arguments in $Y(\cdot)!$)

- update law for the estimates of the dynamic coefficients (\hat{a} becomes the p-dimensional state of the dynamic controller)

$$
\dot{\hat{a}}=\Gamma Y^{T}\left(q, \dot{q}, \dot{q}_{r}, \ddot{q}_{r}\right)\left(\dot{q}_{r}-\dot{q}\right)
$$

estimation gains (variation rate of estimates)
'modified' velocity error

Asymptotic stability of trajectory error

Theorem

The introduced adaptive controller makes the tracking error along the desired trajectory globally asymptotically stable

$$
e=q_{d}-q \longrightarrow 0, \dot{e}=\dot{q}_{d}-\dot{q} \longrightarrow 0
$$

Proof

- a Lyapunov candidate for the closed-loop system (robot + dynamic controller) is given by

$$
\begin{gathered}
V=\frac{1}{2} s^{T} M(q) s+\frac{1}{2} e^{T} R e+\frac{1}{2} \tilde{a}^{T} \Gamma^{-1} \tilde{a} \geq 0 \\
s=\dot{q}_{r}-\dot{q}(=\dot{e}+\Lambda e) \quad R>0 \quad \tilde{a}=a-\hat{a}
\end{gathered}
$$

$$
V=0 \quad \Leftrightarrow \quad \hat{a}=a, \quad q=q_{d}, \quad s=0 \quad\left(\Rightarrow \dot{q}=\dot{q}_{d}\right)
$$

Proof (cont)

- the time derivative of V is

$$
\left.\dot{V}=\frac{1}{2} s^{T} \dot{M}(q) s+s^{T} M(q) \dot{s}\right)+e^{T} R \dot{e}-\tilde{a}^{T} \Gamma^{-1} \dot{\hat{a}}
$$

since $\dot{\tilde{a}}=-\dot{\hat{a}}(\dot{a}=0)$

- the closed-loop dynamics is given by

$$
\begin{aligned}
& M(q) \ddot{q}+S(q, \dot{q}) \dot{q}+g(q)+F_{V} \dot{q}= \\
& \quad=\widehat{M}(q) \ddot{q}_{r}+\hat{S}(q, \dot{q}) \dot{q}_{r}+\hat{g}(q)+\hat{F}_{V} \dot{q}_{r}+K_{P} e+K_{D} \dot{e}
\end{aligned}
$$

subtracting the two sides from $M(q) \ddot{q}_{r}+S(q, \dot{q}) \dot{q}_{r}+g(q)+F_{V} \dot{q}_{r}$ leads to

$$
\begin{aligned}
& \quad \begin{array}{l}
M(q) \dot{s}+\left(S(q, \dot{q})+F_{V}\right) s= \\
\quad=\widetilde{M}(q) \ddot{q}_{r}+\tilde{S}(q, \dot{q}) \dot{q}_{r}+\tilde{g}(q)+\tilde{F}_{V} \dot{q}_{r}-K_{P} e-K_{D} \dot{e} \\
\text { with } \widetilde{M}=M-\widehat{M}, \tilde{S}=S-\hat{S}, \tilde{g}=g-\hat{g}, \quad \tilde{F}_{V}=F_{V}-\hat{F}_{V}
\end{array} .
\end{aligned}
$$

Proof (cont)

- from the property of linearity in the dynamic coefficients, it follows

$$
M(q) \dot{s}+\left(S(q, \dot{q})+F_{V}\right) s=Y\left(q, \dot{q}, \dot{q}_{r}, \ddot{q}_{r}\right) \tilde{a}-K_{P} e-K_{D} \dot{e}
$$

- substituting in \dot{V}, together with $\dot{\hat{a}}=\Gamma Y^{T} s$, and using the skewsymmetry of matrix $\dot{M}-2 S$ we obtain

$$
\begin{aligned}
\dot{V}= & \frac{1}{2} s^{T}[\dot{M}(q)-2 S(q, \dot{q})] s-s^{T} F_{V} s+s^{T} Y \tilde{a} \\
& -s^{T}\left(K_{P} e+K_{D} \dot{e}\right)+e^{T} R \dot{e}-\tilde{a}^{T} Y^{T} S \\
= & -s^{T} F_{V} s-s^{T}\left(K_{P} e+K_{D} \dot{e}\right)+e^{T} R \dot{e}
\end{aligned}
$$

- replacing $s=\dot{e}+\Lambda e$ and being $F_{V}=F_{V}^{T}$ (diagonal)

$$
\dot{V}=-e^{T}\left(\Lambda^{T} F_{V} \Lambda+\Lambda^{T} K_{P}\right) e
$$

a complete

$$
-e^{T}\left(2 \Lambda^{T} F_{V}+\Lambda^{T} K_{D}+K_{P}-R\right) \dot{e}-\dot{e}^{T}\left(F_{V}+K_{D}\right) \dot{e}
$$

Proof (end)

- defining now (all matrices are diagonal!)

$$
\Lambda=K_{D}^{-1} K_{P}>0 \quad R=2 K_{P}\left(I+K_{D}^{-1} F_{V}\right)>0
$$

cancels the cross-term in $e^{T}(\ldots) \dot{e}$ and leads to

$$
\begin{aligned}
\dot{V} & =-e^{T} \Lambda^{T}\left(F_{V}+K_{D}\right) \Lambda e-\dot{e}^{T}\left(F_{V}+K_{D}\right) \dot{e} \\
& =-e^{T} K_{P} K_{D}^{-1}\left(F_{V}+K_{D}\right) K_{D}^{-1} K_{P} e-\dot{e}^{T}\left(F_{V}+K_{D}\right) \dot{e} \leq 0
\end{aligned}
$$

and thus

$$
\dot{V}=0 \Leftrightarrow e=\dot{e}=0
$$

the thesis follows from Barbalat lemma + LaSalle theorem
the maximal invariant set of states $\subseteq\{\dot{V}=0\}$ has zero trajectory error ($e=\dot{e}=0$) and a constant value for \hat{a}, not necessarily the true one ($\tilde{a} \neq 0$)

Remarks

- if the desired trajectory $q_{d}(t)$ is persistently exciting, then also the estimates of the dynamic coefficients converge to their true values
- condition of persistent excitation
- for linear systems: \# of frequency components in the desired trajectory should be at least twice as large as \# of unknown coefficients
- for nonlinear systems: the condition can be checked only a posteriori (a squared motion integral should always be positive bounded from below)
- in case of known absence of (viscous) friction ($F_{V} \equiv 0$), the same proof applies (a bit easier in the final part)
- the adaptive controller does not require the inverse of the inertia matrix (true or estimated), nor the actual robot acceleration (only the desired acceleration), nor further lower bounds on $K_{P}>0, K_{D}>0$
- adaptation can also be used only for a subset of dynamic coefficients, with the others being known $\left(Y a=Y_{\text {adapt }} \hat{a}_{\text {adapt }}+Y_{\text {known }} a_{\text {known }}\right)$
- the non-adaptive version (using accurate estimates) is a static tracking controller based on the passivity property of robot dynamics

Case study: Single-link under gravity

model $I \ddot{\theta}+m g_{0} d \sin \theta+f_{V} \dot{\theta}=u$ (with friction)
linear parameterization
$Y(\theta, \dot{\theta}, \ddot{\theta}) a=\left[\begin{array}{lll}\ddot{\theta} & \sin \theta & \dot{\theta}\end{array}\right]\left[\begin{array}{c}I \\ m g_{0} d \\ f_{V}\end{array}\right]=u$
adaptive controller

$$
\begin{array}{c|c}
e=\theta_{d}-\theta_{\Lambda>0} & u=\widehat{I} \ddot{\theta}_{r}+\widehat{m g_{0}} d \sin \theta+\widehat{f_{V}} \dot{\theta}_{r}+k_{P} e+k_{D} \dot{e} \\
\dot{\theta}_{r}=\dot{\theta}_{d}+\frac{k_{P}}{k_{D}} e \\
\gamma_{i}>0, i=1,2,3
\end{array} \quad \dot{\hat{a}=\left(\begin{array}{c}
\dot{\hat{I}} \\
\frac{\partial_{0}}{m g_{0}} d \\
\dot{\hat{f}_{V}}
\end{array}\right)=\left(\begin{array}{c}
\gamma_{1} \ddot{\theta}_{r} \\
\gamma_{2} \sin \theta \\
\gamma_{3} \dot{\theta}_{r}
\end{array}\right)\left(\dot{\theta}_{r}-\dot{\theta}\right)}
$$

Simulation data

- real dynamic coefficients

$$
I=7.5, \quad m g_{0} d=6, \quad f_{V}=1
$$

- initial estimates

$$
\widehat{I}=5, \quad \widehat{m g_{0}} d=5, \quad \widehat{f_{V}}=2
$$

- control parameters

$$
k_{P}=25, \quad k_{D}=10, \quad \gamma_{i}=5, \quad i=1,2,3
$$

- test trajectories (starting with $\theta(0)=0, \dot{\theta}(0)=0$)
- first

$$
\theta_{d}(t)=-\sin t
$$

- second

$$
\begin{aligned}
\ddot{\theta}_{d}(t)= & (\text { periodic }) \text { bang-bang acceleration profile with } \\
& A=1 \mathrm{rad} / \mathrm{s}^{2}, \omega=1 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Results

first trajectory

position and velocity errors
control torque

$$
\theta_{d}(t)=-\sin t
$$

Results
 second trajectory

position and velocity errors
control torque

$$
\ddot{\theta}_{d}(t)=\text { (periodic) bang-bang acceleration profile }
$$

Estimates of dynamic coefficients

errors $\tilde{a}=a-\hat{a}$
first trajectory
only the estimate of the viscous friction coefficient converges
to the true value
second trajectory
all three estimates of dynamic coefficients converge to their true values

A special case: Adaptive regulation

- adaptation in case q_{d} is constant
- no special simplifications for the presented adaptive control law (designed for the general tracking case...)

$$
\begin{aligned}
u & =\widehat{M}(q) \ddot{q}_{r}+\hat{S}(q, \dot{q}) \dot{q}_{r}+\hat{g}(q)+\hat{F}_{v} \dot{q}_{r}+K_{P} e+K_{D} \dot{e} \\
\dot{\hat{a}} & =\Gamma Y^{T}\left(q, \dot{q}, \dot{q}_{r}, \ddot{q}_{r}\right)\left(\dot{q}_{r}-\dot{q}\right)
\end{aligned}
$$

since $\dot{q}_{r}=\Lambda\left(q_{d}-q\right)$ and $\ddot{q}_{r}=-\Lambda \dot{q}$ do not vanish!

- a different case would be the availability of an adaptive version of the trajectory tracking controller

$$
u=\widehat{M}(q) \ddot{q}_{d}+\hat{S}(q, \dot{q}) \dot{q}_{d}+\hat{g}(q)+\hat{F}_{v} \dot{q}_{d}+K_{P} e+K_{D} \dot{e}
$$

since, when q_{d} collapses to a constant, only the adaptation of the gravity term would be left over (which is what one would naturally expect...)

An efficient adaptive regulator

- use a linear parameterization of the gravity term only

$$
g(q)=G(q) a_{g}
$$

with a p_{g}-dimensional vector a_{g}

- an adaptive regulator yielding global asymptotic stability of the equilibrium state $\left(q_{d}, 0\right)$ is provided by

$$
\begin{aligned}
u & =G(q) \hat{a}_{g}+K_{P}\left(q_{d}-q\right)-K_{D} \dot{q} \\
\dot{\hat{a}}_{g} & =\gamma G^{T}(q)\left(\frac{2 e}{1+2\|e\|^{2}}-\beta \dot{q}\right), \quad \gamma>0
\end{aligned}
$$

where $e=q_{d}-q, K_{P}>0, K_{D}>0$ (symmetric), and $\beta>0$ is chosen sufficiently large

An adaptive regulator

Sketch of asymptotic stability analysis

- use the function

$$
V=\frac{\beta}{2}\left(\dot{q}^{T} M(q) \dot{q}+e^{T} K_{P} e\right)-\frac{2 \dot{q}^{T} M(q) e}{1+2\|e\|^{2}}+\frac{1}{2}\left(\hat{a}_{g}-a_{g}\right)^{T}\left(\hat{a}_{g}-a_{g}\right)
$$

- a sufficient condition for V to be a Lyapunov candidate is that

$$
\beta>\frac{2 M_{M}}{\sqrt{M_{m} K_{P, m}}}
$$

- a sufficient condition which guarantees also that

$$
\dot{V}=\cdots \leq-a\|e\|^{2}-b\|\dot{q}\|^{2} \leq 0, \quad a>0, b>0
$$

is

$$
\beta>\max \left\{\frac{2 M_{M}}{\sqrt{M_{m} K_{P, m}}}, \frac{1}{K_{D, m}}\left(\frac{K_{D, m}^{2}}{2 K_{P, m}}+4 M_{M}+\frac{\alpha_{S}}{\sqrt{2}}\right)\right\}
$$

Note: for any symmetric, positive definite matrix A

$$
\begin{aligned}
& A_{M}=\lambda_{\max }(A)=\sqrt{\lambda_{\max }\left(A^{T} A\right)}=\|A\| \quad \text { and thus, e.g., } \frac{1}{2} \dot{q}^{T} M(q) \dot{q} \geq \frac{1}{2} M_{m}\|\dot{q}\|^{2} \\
& A_{m}=\lambda_{\min }(A)
\end{aligned}
$$

