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Motivation and approach

n need of adaptation in robot motion control laws
n large uncertainty on the robot dynamic parameters
n poor knowledge of the inertial payload

n characteristics of direct adaptive control
n direct aim is to bring to zero the state trajectory error, i.e., 

position and velocity errors
n no need to estimate on-line the true values of the dynamic 

coefficients of the robot (as opposed to indirect adaptive control)
n main tool and methodology

n linear parametrization of robot dynamics
n nonlinear control law of the dynamic type (the controller has its 

own ‘states’)
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Summary of robot parameters
n parameters assumed to be known

n kinematic description based, e.g., on Denavit-Hartenberg parameters  
({𝛼!, 𝑑!, 𝑎!, 𝑖 = 1,… ,𝑁} in case of all revolute joints), including link 
lengths (kinematic calibration)

n uncertain parameters that can be identified off-line
n masses 𝑚!, positions 𝑟"! of CoMs, and inertia matrices 𝐼! of each link, 

appearing in combinations (dynamic coefficients)           ⇒ 𝑝 ≪ 10×𝑁
n parameters that are (slowly) varying during operation

n viscous 𝐹#!, dry 𝐹$!, and stiction 𝐹%! friction at each joint  ⇒ 1 ÷ 3×𝑁
n unknown and abruptly changing parameters 

n mass, CoM, inertia matrix of the payload (w.r.t. the tool center point) 

when a payload is firmly attached to the robot E-E, only the 10 parameters of the 
last link are modified, influencing however most part of the robot dynamics
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Goal of adaptive control

n given a twice-differentiable desired joint trajectory 𝑞!(𝑡)
n with known desired velocity �̇�&(𝑡) and acceleration �̈�&(𝑡)
n possibly obtained by kinematic inversion + joint interpolation

n execute this trajectory under large dynamic uncertainties 
n with a trajectory tracking error vanishing asymptotically

n guaranteeing global stability, no matter how far are the initial 
estimates of the unknown/uncertain parameters from their true 
values and how large is the initial trajectory error

n identification is not of particular concern: in general, the estimates of 
dynamic coefficients will not converge to the true ones!

n if this convergence is a specific extra requirement, then one should 
use (more complex) indirect adaptive schemes
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𝑒 = 𝑞! − 𝑞 ⟶ 0 �̇� = �̇�! − �̇� ⟶ 0



n vector 𝑎 contains only unknown or uncertain coefficients
n each component of 𝑎 is in general a combination of the 

robot physical parameters (not necessarily all of them)
n the model regression matrix 𝑌 depends linearly on �̈�, 

quadratically on �̇� (for the terms related to kinetic energy), 
and nonlinearly (trigonometrically) on 𝑞

Linear parameterization

n there exists always a (𝑝-dimensional) vector 𝑎 of dynamic  
coefficients, so that the robot model takes the linear form

Robotics 2 5

𝑀 𝑞 �̈� + 𝑆 𝑞, �̇� �̇� + 𝑔 𝑞 + 𝐹!�̇� = 𝑢

𝑌 𝑞, �̇�, �̈� 𝑎 = 𝑢



Trajectory controllers
based on model estimates

n inverse dynamics feedforward (FFW) + PD (linear) control

n (nonlinear) control based on feedback linearization (FBL)

n approximate estimates of dynamic coefficients may lead to 
instability with FBL due to temporary ’non-positive’ PD gains 
(e.g., .𝑀 𝑞 𝐾" < 0!)

n not easy to turn these laws in adaptive schemes: inertia 
inversion/use of acceleration (FBL); bounds on PD gains (FFW)
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:𝑢&

𝑢 = .𝑀 𝑞! �̈�! + 4𝑆 𝑞! , �̇�! �̇�! + 7𝑔 𝑞! + 9𝐹#�̇�! +𝐾"𝑒 + 𝐾$�̇�

𝑢 = .𝑀 𝑞 (�̈�! +𝐾"𝑒 + 𝐾$�̇�) + 4𝑆 𝑞, �̇� �̇� + 7𝑔 𝑞 + 9𝐹#�̇�

.𝑀, /𝑆, 0𝑔, 1𝐹! ⟺ estimate 0𝑎



A control law more easily made ‘adaptive’
n nonlinear trajectory tracking control (without cancellations) 

having global asymptotic stabilization properties

n without extra assumptions, it can be shown that joint velocities 
become eventually “clamped” to those of the desired trajectory  
(zero velocity error), but a residual position error may be left

𝑢 = .𝑀 𝑞 �̈�! + 4𝑆 𝑞, �̇� �̇�! + 7𝑔 𝑞 + 9𝐹#�̇�! +𝐾"𝑒 + 𝐾$�̇�
n a natural adaptive version would require ...

designing a suitable update law
(in continuous time) 0̇𝑎 =

�̇�! ⟶ �̇�" = �̇�! + Λ(𝑞! − 𝑞) Λ > 0
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n idea: on-line modification with a reference velocity

typically, Λ = 𝐾$'(𝐾) (all matrices will be chosen diagonal)



Intuitive interpretation of �̇�*
n elementary case

n a mass ‘lagging behind’ a mobile reference (𝑒 > 0) at constant speed

𝑞 𝑞&(𝑡)𝑒 > 0

𝑢

mobile
reference

controlled
mass

�̇�

𝐾#
n a mass ‘leading in front’ of its mobile reference (𝑒 < 0)

in a symmetric way, a ‘reduced’ velocity error will appear (𝑠 < �̇�)
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�̇�* = �̇�& + Λ 𝑒

�̇�&

‘enhanced’ velocity error 𝑠 = �̇�* − �̇� > �̇�& − �̇� = �̇�

𝑢 = 𝐾$𝑠 = 𝐾$ �̇�" − �̇� = 𝐾$ �̇�! + Λ 𝑒 − �̇� = 𝐾$�̇� + 𝐾$Λ 𝑒



n substituting �̇�* = �̇�& + Λ𝑒, �̈�* = �̈�& + Λ�̇� in the previous nonlinear 
controller for trajectory tracking

n update law for the estimates of the dynamic coefficients (:𝑎 becomes 
the 𝑝-dimensional state of the dynamic controller)

dynamic parameterization of
the control law using current estimates

(note here the 4 arguments in 𝑌($)!)

PD stabilization
(diagonal matrices, >0)

estimation gains
(variation rate of estimates)

(diagonal)

Adaptive control law design
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𝑠
‘modified’ velocity error

𝑢 = .𝑀 𝑞 �̈�% + 4𝑆 𝑞, �̇� �̇�% + 7𝑔 𝑞 + 9𝐹#�̇�% +𝐾"𝑒 + 𝐾$�̇�
= 𝑌 𝑞, �̇�, �̇�% , �̈�% 7𝑎 + 𝐾"𝑒 + 𝐾$�̇�

Γ > 07̇𝑎 = Γ𝑌&(𝑞, �̇�, �̇�% , �̈�%)(�̇�% − �̇�)



The introduced adaptive controller makes the tracking error along 
the desired trajectory globally asymptotically stable

Asymptotic stability of trajectory error
Theorem
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𝑒 = 𝑞! − 𝑞 ⟶ 0, �̇� = �̇�! − �̇� ⟶ 0

0𝑎 = 𝑎 − 2𝑎

n a Lyapunov candidate for the closed-loop system (robot + 
dynamic controller) is given by

modified velocity error constant matrix
(to be specified later)

Proof

error in parametric
estimation

𝑉 =
1
2 𝑠

%𝑀 𝑞 𝑠 +
1
2𝑒

%𝑅𝑒 +
1
2 0𝑎

%Γ&' 0𝑎 ≥ 0

𝑅 > 0𝑠 = �̇�" − �̇� (= �̇� + Λ𝑒)

𝑉 = 0 ⟺ 2𝑎 = 𝑎, 𝑞 = 𝑞!, 𝑠 = 0 (⇒ �̇� = �̇�!)



n the time derivative of V is

since Ḋ𝑎 = −:̇𝑎 (�̇� = 0)

Proof (cont)

n the closed-loop dynamics is given by

subtracting the two sides from 𝑀 𝑞 �̈�* + 𝑆 𝑞, �̇� �̇�* +𝑔 𝑞 + 𝐹#�̇�*
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�̇� =
1
2 𝑠

%�̇� 𝑞 𝑠 + 𝑠%𝑀 𝑞 �̇� + 𝑒%𝑅�̇� − 0𝑎%Γ&' 2̇𝑎

𝑀 𝑞 �̈� + 𝑆 𝑞, �̇� �̇� + 𝑔 𝑞 + 𝐹(�̇� =
= B𝑀 𝑞 �̈�" + C𝑆 𝑞, �̇� �̇�" + 2𝑔 𝑞 + D𝐹(�̇�" +𝐾#𝑒 + 𝐾$�̇�

𝑀(𝑞)�̇� + 𝑆 𝑞, �̇� + 𝐹( 𝑠 =
= E𝑀 𝑞 �̈�" + F𝑆 𝑞, �̇� �̇�" + 0𝑔 𝑞 + G𝐹(�̇�" −𝐾#𝑒 − 𝐾$�̇�

leads to

with H𝑀 = 𝑀− I𝑀, J𝑆 = 𝑆 − K𝑆, D𝑔 = 𝑔 − :𝑔, L𝐹# = 𝐹# − M𝐹#



n from the property of linearity in the dynamic coefficients, it follows

Proof (cont)

n substituting in �̇�, together with :̇𝑎 = Γ𝑌+𝑠, and using the skew-
symmetry of matrix �̇� − 2𝑆 we obtain

n replacing 𝑠 = �̇� + Λ 𝑒 and being 𝐹# = 𝐹#+ (diagonal)
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𝑀(𝑞)�̇� + 𝑆 𝑞, �̇� + 𝐹( 𝑠 = 𝑌 𝑞, �̇�, �̇�", �̈�" 0𝑎 − 𝐾#𝑒 − 𝐾$�̇�

�̇� =
1
2 𝑠

% �̇� 𝑞 − 2𝑆 𝑞, �̇� 𝑠 − 𝑠%𝐹(𝑠 + 𝑠%𝑌 0𝑎

−𝑠%(𝐾#𝑒 + 𝐾$�̇�) + 𝑒%𝑅�̇� − 0𝑎%𝑌%𝑠
= −𝑠%𝐹(𝑠 − 𝑠%(𝐾#𝑒 + 𝐾$�̇�) + 𝑒%𝑅�̇�

�̇� = −𝑒%(Λ%𝐹(Λ + Λ%𝐾#)𝑒
−𝑒% 2Λ%𝐹( + Λ%𝐾$ +𝐾# − 𝑅 �̇� − �̇�%(𝐹( +𝐾$)�̇�a complete

quadratic form
in 𝑒, �̇�!



n defining now (all matrices are diagonal!)

Proof (end)

cancels the cross-term in 𝑒+(…)�̇� and leads to

and thus

the thesis follows from Barbalat lemma + LaSalle theorem 

the maximal invariant set of states ⊆ �̇� = 0 has zero trajectory error 
(𝑒 = �̇� = 0) and a constant value for :𝑎, not necessarily the true one ( D𝑎 ≠ 0)
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Λ = 𝐾$&'𝐾# > 0 𝑅 = 2𝐾# (𝐼 + 𝐾$&'𝐹() > 0

�̇� = −𝑒%Λ%(𝐹( +𝐾$)Λ𝑒 − �̇�%(𝐹( +𝐾$)�̇�
= −𝑒%𝐾#𝐾$&'(𝐹( +𝐾$)𝐾$&'𝐾#𝑒 − �̇�%(𝐹( +𝐾$)�̇� ≤ 0

�̇� = 0 ⟺ 𝑒 = �̇� = 0



Remarks
n if the desired trajectory 𝑞&(𝑡) is persistently exciting, then also the 

estimates of the dynamic coefficients converge to their true values
n condition of persistent excitation 

n for linear systems: # of frequency components in the desired trajectory 
should be at least twice as large as # of unknown coefficients

n for nonlinear systems: the condition can be checked only a posteriori
(a squared motion integral should always be positive bounded from below)

n in case of known absence of (viscous) friction (𝐹# ≡ 0), the same 
proof applies (a bit easier in the final part)

n the adaptive controller does not require the inverse of the inertia 
matrix (true or estimated), nor the actual robot acceleration (only the 
desired acceleration), nor further lower bounds on 𝐾) > 0,𝐾$ > 0

n adaptation can also be used only for a subset of dynamic coefficients, 
with the others being known (𝑌𝑎 = 𝑌,&,-. :𝑎,&,-. + 𝑌/0120𝑎/0120)

n the non-adaptive version (using accurate estimates) is a static 
tracking controller based on the passivity property of robot dynamics
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Case study: Single-link under gravity

model
linear parameterization

adaptive controller
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(with friction)𝐼�̈� + 𝑚𝑔'𝑑 sin 𝜃 + 𝑓#�̇� = 𝑢
𝑢 𝑑

𝑚

𝜃

𝑌 𝜃, �̇�, �̈� 𝑎 = �̈� sin 𝜃 �̇�
𝐼

𝑚𝑔'𝑑
𝑓#

= 𝑢

�̇�% = �̇�! +
𝑘"
𝑘$
𝑒

𝑒 = 𝜃! − 𝜃

𝛾( > 0, 𝑖 = 1,2,3

𝑢 = .𝐼 �̈�% + M𝑚𝑔'𝑑 sin 𝜃 + .𝑓#�̇�% + 𝑘"𝑒 + 𝑘$�̇�

7̇𝑎 =
.̇𝐼
Ṁ𝑚𝑔'𝑑
.̇𝑓#

=
𝛾)�̈�%
𝛾* sin 𝜃
𝛾+�̇�%

(�̇�% − �̇�)

Λ > 0



Simulation data
n real dynamic coefficients

n initial estimates

n control parameters

n test trajectories (starting with 𝜃 0 = 0, �̇� 0 = 0) 
n first

n second
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Note: same test trajectories
used also for robust control

𝐼 = 7.5, 𝑚𝑔'𝑑 = 6, 𝑓# = 1

.𝐼 = 5, M𝑚𝑔'𝑑 = 5, .𝑓# = 2

�̈�! 𝑡 = (periodic) bang-bang acceleration profile with
𝐴 = 1 rad/s2, 𝜔 = 1 rad/s

𝜃! 𝑡 = −sin 𝑡

𝑘" = 25, 𝑘$ = 10, 𝛾( = 5, 𝑖 = 1,2,3



Results
first trajectory

position and velocity errors control torque

note the nonlinear system dynamics
(no sinusoidal regime at steady state!)
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�̇�

𝑒

𝜃! 𝑡 = −sin 𝑡



Results
second trajectory

note the torque discontinuities
(due to those of the desired acceleration)

Robotics 2 18

position and velocity errors control torque

�̈�! 𝑡 = (periodic) bang-bang acceleration profile

�̇�

𝑒



Estimates of dynamic coefficients

second trajectoryfirst trajectory
errors 0𝑎 = 𝑎 − 2𝑎

only the estimate of the viscous
friction coefficient converges

to the true value

all three estimates of
dynamic coefficients converge

to their true values
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𝑚𝑔!𝑑 − 2𝑚𝑔!𝑑

𝐼 − 4𝐼

𝑓" − 4𝑓"

𝑚𝑔!𝑑 − 2𝑚𝑔!𝑑

𝐼 − 4𝐼

𝑓" − 4𝑓"



A special case: Adaptive regulation
n adaptation in case 𝑞! is constant
n no special simplifications for the presented adaptive control 

law (designed for the general tracking case…)

since �̇�* = Λ(𝑞& − 𝑞) and �̈�* = −Λ�̇� do not vanish!
n a different case would be the availability of an adaptive 

version of the trajectory tracking controller

since, when 𝑞! collapses to a constant, only the adaptation 
of the gravity term would be left over (which is what one 
would naturally expect…)
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𝑢 = I𝑀 𝑞 �̈�* + K𝑆 𝑞, �̇� �̇�* + :𝑔 𝑞 + M𝐹3�̇�* +𝐾)𝑒 + 𝐾$�̇�

:̇𝑎 = Γ𝑌+(𝑞, �̇�, �̇�*, �̈�*)(�̇�* − �̇�)

𝑢 = I𝑀 𝑞 �̈�& + K𝑆 𝑞, �̇� �̇�& + :𝑔 𝑞 + M𝐹3�̇�& +𝐾)𝑒 + 𝐾$�̇�



An efficient adaptive regulator
n use a linear parameterization of the gravity term only

with a 𝑝𝑔-dimensional vector 𝑎𝑔
n an adaptive regulator yielding global asymptotic stability

of the equilibrium state (𝑞𝑑, 0) is provided by

where 𝑒 = 𝑞𝑑 − 𝑞, 𝐾𝑃 > 0, 𝐾𝐷 > 0 (symmetric), and 
𝛽 > 0 is chosen sufficiently large
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(see paper by P. Tomei, IEEE TRA, 1991; available as extra material on the course web)

𝑔 𝑞 = 𝐺(𝑞)𝑎,

𝑢 = 𝐺 𝑞 7𝑎, +𝐾" 𝑞! − 𝑞 − 𝐾$�̇�

7̇𝑎, = 𝛾𝐺& 𝑞
2𝑒

1 + 2 𝑒 * − 𝛽�̇� , 𝛾 > 0



An adaptive regulator
Sketch of asymptotic stability analysis

n use the function

n a sufficient condition for 𝑉 to be a Lyapunov candidate is that

n a sufficient condition which guarantees also that

is

Note: for any symmetric, positive definite matrix 𝐴

and thus, e.g., !
"
�̇�#𝑀 𝑞 �̇� ≥ !

"
𝑀$ �̇� "
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𝑉 =
𝛽
2 �̇�+𝑀 𝑞 �̇� + 𝑒+𝐾)𝑒 −

2�̇�+𝑀 𝑞 𝑒
1 + 2 𝑒 4 +

1
2 :𝑎5 − 𝑎5

+ :𝑎5 − 𝑎5

𝛽 >
2𝑀%

𝑀$𝐾&,$

�̇� = ⋯ ≤ −𝑎 𝑒 4 − 𝑏 �̇� 4 ≤ 0, 𝑎 > 0, 𝑏 > 0

𝛽 > max
2𝑀%

𝑀$𝐾&,$
,
1

𝐾(,$
𝐾(,$"

2𝐾&,$
+ 4𝑀% +

𝛼)
2

𝑆(𝑞, �̇�) ≤ 𝛼)�̇�

𝐴% = 𝜆*+, 𝐴 = 𝜆*+, 𝐴#𝐴 = 𝐴
𝐴$ = 𝜆*-. 𝐴


