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Problem formulation 

  given the real robot, modeled by 

  assuming an estimated feedback linearization control 

  we would like to design    so as to obtain 
  asymptotic stability of the closed-loop system 
  the best possible trajectory tracking performance 

  the linear feedback choice is not enough... 

  questions: 
  which should be the conditions on the estimates? 
  can we guarantee stability/performance, based on known 

bounds on the uncertainties? 
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Closed-loop equations - 1 

  under uncertain conditions (estimated ≠ real dynamic 
coefficients), feedback linearization is only approximate 
and the closed-loop equations are still nonlinear 

 where     depends on the amount of uncertainty 
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Closed-loop equations - 2 

  closed-loop state equations are written as 

  closed-loop error equations with respect to a desired 
are rewritten as 

⇒ 

note that errors 
are defined here 

with opposite 
signs w.r.t. usual  



Robotics 2                                       5 

Solution approach 

  add an external robust control term/loop 
  based on computable bounds on the uncertainties 

  based on the theory of guaranteed stability for 
nonlinear uncertain system 

  Lyapunov-based analysis 
  a discontinuous control law will result 

  difficult to implement because of chattering effects 
  smoothed version with only uniformly ultimate 

boundedness (u.u.b. stability) of the tracking error 
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Working assumptions 

1.  bound on the desired trajectory 

2.  bound on the estimate of the robot inertia matrix 

 with           , holding for all configurations  

3.  bound on the estimate of nonlinear dynamic terms 

  with a known function    , bounded for all  
  as a general rule, exploiting the model structure (e.g., its 

linear parameterization) may lead to more stringent bounds 
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Bound on the inertia matrix 

  assumption 2. can always be satisfied, knowing some upper and 
lower bounds (that always exist due to the positive definiteness) 
on the inverse of the inertia matrix 

  it is then sufficient to choose as estimate 

  in fact, using the SVD factorization of the inverse inertia matrix, it 
can be shown that (see Appendix A) 

with 
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Control design – step 1 

  linear control law with an added robust term 

 where the PD gains are diagonal and positive matrices 

  we obtain 

 being 

 where      has all eigenvalues with negative real part, 
and 
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Control design – step 2 

  (same) bound on nonlinear terms and added robust term 

  we can use the previous data and implicitly define the 
bound            from 

 yielding the well-defined (since                  ), limited and 
possibly time-varying function                      
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Control design – step 3 

  solve an associated (linear) Lyapunov equation, for any 
given symmetric            matrix 

 finding the unique (symmetric) solution matrix 

  finally, define the discontinuous robust term as 

 that also satisfies, by its own structure, 
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Solving the Lyapunov equation 

  in general, using lyap in Matlab (only once, in advance) 
  closed-form solution in an interesting scalar case (one 

robot joint/link), to get a “feeling”... 

so that (also in the n-dof case) 

choose, e.g., ⇒ find 

⇒  
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Stability analysis 

Defining                     , the presented robust control law 
with the discontinuous term is such that                along 
the trajectories of the closed-loop error system 

⇒  

⇒  ⇒  

⇒  

if  

if  
note: because of the discontinuity 

 we cannot directly conclude on the 
(global) asymptotic stability of e=0 

Proof 

Theorem 1 
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A smoother robust controller 

  for any given (small)          , define the continuous 
robust term as 

With the above continuous robust control law, any solution  
       , with                , of the closed-loop error system is 
uniformly ultimately bounded with respect to a suitable set 
(a neighborhood of the origin) 

Theorem 2 

Proof in Appendix B 



Case study: Single-link under gravity 

model 

known bounds for control design 

error equations 
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(no friction) 



Calculations for robust control 
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% real robot 
I=5; mgd=7;  
% initial robot state 
th0=0;thp0=0; 
% range of uncertainties  
I_min=5; I_max=10; 
mgd_min=5;mgd_max=7; 
% linear tracking stabilizer gains 
kp=25; kd=10; % two poles in -5 

% robust control part 
% Lyapunov matrix P and b^T P term 
A=[0 1; -kp -kd]; 
q=1; Q=q*eye(2); 
P=lyap(A',Q); % solve A'*P+P*A+Q=0 
b=[0 1]; 
bP=b*P; % =[0.02  0.052] 

% bounding dynamic terms 
% inertia 
m=1/I_max; M=1/I_min; 
c=(M+m)/2; 
alpha=(M-m)/(M+m); 
Ihat=1/c; % =6.6667 
% nonlinear terms (only gravity) 
Mphi=M*(mgd_max-mgd_min); 
mgdhat=5; 
% overall bounding 
rho0=Mphi/(1-alpha)  % =0.6 
rho1=alpha/(1-alpha) % =0.5 
% smoothed version  
epsilon=5*10^-4; 

red values are used in Simulink 
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position and velocity errors 
are largely reduced, 

but control chattering  
at high frequency 

(when error is close to zero) 
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position and velocity errors 
are similarly reduced, 

without control chattering  

(using here          ) 
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position and velocity errors 
again largely reduced, 
but control chattering 

and larger effort  
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position and velocity errors 
are further reduced, 

without control chattering 
and same control effort as 
without robustifying term  

(using here          ) 
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Appendix A 
Proof of bounds on the inertia matrix 

  the SVD factorization of the (symmetric) inverse inertia matrix is 

 so that, with the choice made for its estimate, it follows that 
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Appendix B 
Proof of Theorem 2 

  setting                   , note that for the robust term in the control 
law it is 

  defining as before                       , we have 

 having used the chain of inequalities 

  if              , the rest of the proof is the same as in Theorem 1 

% 



Robotics 2                                     24 

Appendix B 
Proof of Theorem 2 (cont) 

  if              , the second term in the derivative of     is 

 with a maximum value       attained for  
  therefore, it is 

 provided that 

  if     is the smallest level set of                   (an ellipsoid) containing 
the hyper-sphere of radius    , then 

                                                     and u.u.b. is obtained for  

(an upper bound for the time needed to reach     can be given) 


