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Robotics 2

Problem formulation

given the real robot, modeled by
B(q)q+n(q,q) = u

assuming an estimated feedback linearization control
u = B(q)a+ n(q.q)

we would like to design a so as to obtain

= asymptotic stability of the closed-loop system
= the best possible trajectory tracking performance

the linear feedback choice is not enough...
a=q4q+ Kp(ga—q)+ Kp(qa —q)
guestions:

= Which should be the conditions on the estimates?

= Can we guarantee stability/performance, based on known
bounds on the uncertainties?



Closed-loop equations - 1

= under uncertain conditions (estimated # real dynamic
coefficients), feedback linearization is only approximate
and the closed-loop equations are still nonlinear

=B (q)(B(g)a+n(q,d) — n(g,9))
=a+ (B~ (q)B(q) — I)a
+ B~ '(q)(7(q,q) — n(q,4q))
=a+ E(q)a + B~ (q)An(q, q)
=a+1(a,q,q)
where 7 depends on the amount of uncertainty

E(q) = B~ '(q)AB(q) = B '(q)(B(q) — B(q))
An(q,q) = n(q,q) — n(q,q)
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Closed-loop equations - 2

= Closed-loop state equations are written as
= Ax+ B(a + n)

=[5 o] =[1] ==[2]-13

= closed-loop error equations with respect to a desired ¢4(?)
are rewrltten as note that errors
€1 =21 —L1d =49 —4a €2 =22 —X2d = q — {qd aﬁ.fﬂ?iﬂﬁff
) signs w.r.t. usual

€1 — €9

és =G — Ga=a+n(a,e1,€e2,q4,4d) — Ga

— e=Ae+B(a+7y—qd)
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Solution approach

= add an external robust control term/loop
= based on computable bounds on the uncertainties

= based on the theory of guaranteed stability for
nonlinear uncertain system

= Lyapunov-based analysis

s a discontinuous control law will result

=« difficult to implement because of chattering effects

= smoothed version with only uniformly ultimate
boundedness (u.u.b. stability) of the tracking error
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Working assumptions

1. bound on the desired trajectory

sup ||Qd|| < Qmax < OoC
t>0

2. bound on the estimate of the robot inertia matrix
|E@) =B~ (a)B(q) - I|| < a < 1
with o > 0, holding for all configurations ¢
3. bound on the estimate of nonlinear dynamic terms
|An(g, )| < o(e, )
with a known function ¢ , bounded for all ¢

= as a general rule, exploiting the model structure (e.qg., its
linear parameterization) may lead to more stringent bounds
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Bound on the inertia matrix

assumption 2. can always be satisfied, knowing some upper and
lower bounds (that always exist due to the positive definiteness)
on the inverse of the inertia matrix

0<m<|B Yq)| <M < x
it is then sufficient to choose as estimate

~ 1 M ,
B = - with c¢= i
c 2
in fact, using the SVD factorization of the inverse inertia matrix, it
can be shown that (see Appendix A)

A M —m
B 'B_1J| < : —
H || = M +m a <1




Control design — step 1

= linear control law with an added robust term

azijd—erl — Kpes |+ Aa

where the PD gains are diagonal and positive matrices
= we obtain .
é = Ae + B(Aa + 1)
being

A=A-BK K=[Kp Kp]

where A has all eigenvalues with negative real part,
and

1= E(jq — Ke + Aa) + B~'An
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Control design — step 2

= (same) bound on nonlinear terms and added robust term
7]l < ple, ) |Aal| < p(e,t)

= We can use the previous data and implicitly define the
bound p(e, t) from

lill = [|[EAa + E(ja — Ke) + B~ Anl|
< ap(e,t) + a(Qmax + [IK| - [[e]]) + M(e, t)
=: p(e, 1)
yielding the well-defined (since 0 < o« < 1), limited and
possibly time-varying function
1

plet)|= 72— [o(Qumax + K] - [lel}) + Mab(e. )]
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Control design — step 3

= Solve an associated (linear) Lyapunov equation, for any
given symmetric () > 0 matrix

ATP+PA+Q =0
finding the unique (symmetric) solution matrix 2~ > 0

= finally, define the discontinuous robust term as

, BT Pe o 12T
—ple.t f|B* Pe 0
/)(67_‘ )HBTPE’H 1 € 7é

0 if ||BT Pel| =0

Aa =

that also satisfies, by its own structure, ||Aal| < p(e, t)
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Solving the Lyapunov equation

= in general, using 1yap in Matlab (only once, in advance)

= Closed-form solution in an interesting scalar case (one
robot joint/link), to get a “feeling”...

. o1 , o] . .. - e [0 1 - _
A—[O O] L»_H K=I[kp Fkp] A_A—bk,_[_kp —kp} kp>0,kp >0
choose, e.g., Q=¢q-I,.o >0 =find P=|P11 P12| 4
P12 P22 |~~~
test!
ATP+PA+q-I= p12=—q 1!922=g L >0
2kp 2 \ kpkp
:[—QPrsz-i-q Pll—P12kD_P22kP]:O 1 1+ k
symm 2(p12 — kpp22) + ¢ Pll_g D Pl >o
kp kp

= P11P22 —P%z >0

so that (also in the n-dof case) | BT Pe |= block e 1+ kp e
]‘P kp kD
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Stability analysis

_ Theorem 1
Defining V (e¢) = ¢! Pe, the presented robust control law
with the discontinuous term is such that V' (e¢) < 0 along
the trajectories of the closed-loop error system

Proof V(e) = éT Pe + el Pé
= e’ (ATP + PA) e+ 2¢" PB(Aa+ 1)
= —e’ Qe + 2¢" PB(Aa + 1)
= —eT Qe + 2w’ (Aa + 7))

if w=0 = V=-—'Qe<0 T

w - w! w _
wl(—p—+0) = —p—— + w7
]| [[w]]

< —pllw|| + [[w] - [|7]
) o
ote: because of the discontinuity _
we cannot directly conclude on the = [[w||(=p+ 7)) =0

(global) asymptotic stability of e=0 = V <0 4
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A smoother robust controller

= for any given (small) e > 0, define the continuous
robust term as

B! Pe . 11 12T
/)(C. )H BTPE’H if HB PCH - €

Aa =

_plet) grp, if ||BT Pe|| < ¢

~ Theorem 2

With the above continuous robust control law, any solution
e(t), withe(0) = eg, of the closed-loop error system is
uniformly ultimately bounded with respect to a suitable set .S
(a neighborhood of the origin)

Proof in Appendix B
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model 1 9 + mgdsin@ = uw  (no friction)

error equations
é1 = e
ézz%u— mlgdsine—éd
= %[IA(a+ Aa) +@sin6’] — mIgd sinf — 6,
er =60 —04 A
ey =0 — 6, =a+Aa+(7[——1)(a+Aa)+%lﬂSin9—éd

known bounds for control design

h<1 <10 b <mgd <7
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Calculations for robust control

% real robot

I=5; mgd=7;

% initial robot state
th0=0;thp0=0;

% range of uncertainties

I_ min=5; I_max=10;
mgd_min=5;mgd_max=7;

% linear tracking stabilizer gains
kp=25; kd=10; % two poles in -5

% robust control part

% Lyapunov matrix P and bAT P term
A=[0 1; -kp -kd];

q=1; Q=q*eye(2);

P=lyap(A',Q); % solve A*P+P*A+Q=0
b=[0 1];

bP=b*P; % =[0.02 0.052]
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% bounding dynamic terms

% inertia

m=1/I_max; M=1/I_min;
c=(M+m)/2;
alpha=(M-m)/(M+m);
That=1/c; % =6.6667

% nonlinear terms (only gravity)
Mphi=M*(mgd_max-mgd_min);
mgdhat=5;

% overall bounding
rho0=Mphi/(1-alpha) % =0.6
rhol=alpha/(1-alpha) % =0.5
% smoothed version
epsilon=5*%10"-4;

red values are used in Simulink
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Results

first trajectory — feedback linearization, no robust loop @
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Results
first trajectory — discontinuous robust control
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Results
first trajectory — smoothed robust control
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Oa(t) = —sint

position and velocity errors
are similarly reduced,
without control chattering

(using here e > 0)
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Results
second trajectory — fbk linearization, no robust loop
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second trajectory — discontinuous robust control

Results
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second trajectory — smoothed robust control

Results
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Appendix A

Proof of bounds on the inertia matrix

= the SVD factorization of the (symmetric) inverse inertia matrix is

B—l=UZ‘-1UT=Udiag{i,...,L}UT m < — <...gi£1w
a1

On On a1
so that, with the choice made for its estimate, it follows that

|B1B—1I|=|US~1UTB I
1
= U=t UT - (- 1) - I

1 1
= U@ - -DUY|
1
<O 1=~ I U7
DR (-
C C

M—-—c M-—m
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Appendix B

Proof of Theorem 2

= setting w = BT Pe, note that for the robust term in the control
law it is £ ol
P it |w|| = €
Aal = .
[a { (p/Ollwl <p if llw] <

= defining as before V' (e) = el Pe , we have
Vie) = —el Qe + 2w (Aa + 7))

< —eT' Qe + 2w’ (Aa +p— ¢ )

[l
having used the chain of inequalities

Wy < o) < ol -l < Jlwllp=w"pr

« if |[w]|| = €, the rest of the proof is the same as in Theorem 1
%
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Appendix B

Proof of Theorem 2 (cont)

= if ||w|| < €, the second term in the derivative of V' is

p w |w]|?
2w’ (——'w—|—p—> = 2p (— + ||wl|
€ |w|] €

with a maximum value p3 attained for ||w| = §
= therefore, it is

. € €
V(e) < —e"Qe+p5 < —Amin(Q) lle* +p7 <0

provided that

1/2
le] [ pe ] .
a 2/\min(Q)

= if S is the smallest level set of V = el Pe (an ellipsoid) containing
the hyper-sphere of radius w, then

ez S — V(e) < 0 andu.u.b. is obtained for S

robotice 2 (an upper bound for the time needed to reach S’ can be given) 4 y



