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Problem formulation 

  given the real robot, modeled by 

  assuming an estimated feedback linearization control 

  we would like to design    so as to obtain 
  asymptotic stability of the closed-loop system 
  the best possible trajectory tracking performance 

  the linear feedback choice is not enough... 

  questions: 
  which should be the conditions on the estimates? 
  can we guarantee stability/performance, based on known 

bounds on the uncertainties? 
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Closed-loop equations - 1 

  under uncertain conditions (estimated ≠ real dynamic 
coefficients), feedback linearization is only approximate 
and the closed-loop equations are still nonlinear 

 where     depends on the amount of uncertainty 
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Closed-loop equations - 2 

  closed-loop state equations are written as 

  closed-loop error equations with respect to a desired 
are rewritten as 

⇒ 

note that errors 
are defined here 

with opposite 
signs w.r.t. usual  
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Solution approach 

  add an external robust control term/loop 
  based on computable bounds on the uncertainties 

  based on the theory of guaranteed stability for 
nonlinear uncertain system 

  Lyapunov-based analysis 
  a discontinuous control law will result 

  difficult to implement because of chattering effects 
  smoothed version with only uniformly ultimate 

boundedness (u.u.b. stability) of the tracking error 
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Working assumptions 

1.  bound on the desired trajectory 

2.  bound on the estimate of the robot inertia matrix 

 with           , holding for all configurations  

3.  bound on the estimate of nonlinear dynamic terms 

  with a known function    , bounded for all  
  as a general rule, exploiting the model structure (e.g., its 

linear parameterization) may lead to more stringent bounds 
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Bound on the inertia matrix 

  assumption 2. can always be satisfied, knowing some upper and 
lower bounds (that always exist due to the positive definiteness) 
on the inverse of the inertia matrix 

  it is then sufficient to choose as estimate 

  in fact, using the SVD factorization of the inverse inertia matrix, it 
can be shown that (see Appendix A) 

with 
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Control design – step 1 

  linear control law with an added robust term 

 where the PD gains are diagonal and positive matrices 

  we obtain 

 being 

 where      has all eigenvalues with negative real part, 
and 
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Control design – step 2 

  (same) bound on nonlinear terms and added robust term 

  we can use the previous data and implicitly define the 
bound            from 

 yielding the well-defined (since                  ), limited and 
possibly time-varying function                      
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Control design – step 3 

  solve an associated (linear) Lyapunov equation, for any 
given symmetric            matrix 

 finding the unique (symmetric) solution matrix 

  finally, define the discontinuous robust term as 

 that also satisfies, by its own structure, 
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Solving the Lyapunov equation 

  in general, using lyap in Matlab (only once, in advance) 
  closed-form solution in an interesting scalar case (one 

robot joint/link), to get a “feeling”... 

so that (also in the n-dof case) 

choose, e.g., ⇒ find 

⇒  
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Stability analysis 

Defining                     , the presented robust control law 
with the discontinuous term is such that                along 
the trajectories of the closed-loop error system 

⇒  

⇒  ⇒  

⇒  

if  

if  
note: because of the discontinuity 

 we cannot directly conclude on the 
(global) asymptotic stability of e=0 

Proof 

Theorem 1 
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A smoother robust controller 

  for any given (small)          , define the continuous 
robust term as 

With the above continuous robust control law, any solution  
       , with                , of the closed-loop error system is 
uniformly ultimately bounded with respect to a suitable set 
(a neighborhood of the origin) 

Theorem 2 

Proof in Appendix B 



Case study: Single-link under gravity 

model 

known bounds for control design 

error equations 
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(no friction) 



Calculations for robust control 
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% real robot 
I=5; mgd=7;  
% initial robot state 
th0=0;thp0=0; 
% range of uncertainties  
I_min=5; I_max=10; 
mgd_min=5;mgd_max=7; 
% linear tracking stabilizer gains 
kp=25; kd=10; % two poles in -5 

% robust control part 
% Lyapunov matrix P and b^T P term 
A=[0 1; -kp -kd]; 
q=1; Q=q*eye(2); 
P=lyap(A',Q); % solve A'*P+P*A+Q=0 
b=[0 1]; 
bP=b*P; % =[0.02  0.052] 

% bounding dynamic terms 
% inertia 
m=1/I_max; M=1/I_min; 
c=(M+m)/2; 
alpha=(M-m)/(M+m); 
Ihat=1/c; % =6.6667 
% nonlinear terms (only gravity) 
Mphi=M*(mgd_max-mgd_min); 
mgdhat=5; 
% overall bounding 
rho0=Mphi/(1-alpha)  % =0.6 
rho1=alpha/(1-alpha) % =0.5 
% smoothed version  
epsilon=5*10^-4; 

red values are used in Simulink 
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position and velocity errors 
are largely reduced, 

but control chattering  
at high frequency 

(when error is close to zero) 
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position and velocity errors 
are similarly reduced, 

without control chattering  

(using here          ) 
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position and velocity errors 
again largely reduced, 
but control chattering 

and larger effort  
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position and velocity errors 
are further reduced, 

without control chattering 
and same control effort as 
without robustifying term  

(using here          ) 
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Appendix A 
Proof of bounds on the inertia matrix 

  the SVD factorization of the (symmetric) inverse inertia matrix is 

 so that, with the choice made for its estimate, it follows that 
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Appendix B 
Proof of Theorem 2 

  setting                   , note that for the robust term in the control 
law it is 

  defining as before                       , we have 

 having used the chain of inequalities 

  if              , the rest of the proof is the same as in Theorem 1 

% 



Robotics 2                                     24 

Appendix B 
Proof of Theorem 2 (cont) 

  if              , the second term in the derivative of     is 

 with a maximum value       attained for  
  therefore, it is 

 provided that 

  if     is the smallest level set of                   (an ellipsoid) containing 
the hyper-sphere of radius    , then 

                                                     and u.u.b. is obtained for  

(an upper bound for the time needed to reach     can be given) 


