
Robotics 2

Prof. Alessandro De Luca

Trajectory Tracking Control

Inverse dynamics control
given the robot dynamic model with 𝑁 joints

and a twice-differentiable desired trajectory for 𝑡 ∈ [0, 𝑇]

applying the feedforward torque in nominal conditions

yields exact reproduction of the desired motion, provided
that 𝑞(0) = 𝑞!(0), �̇�(0) = �̇�!(0) (initial matched state)

𝑐 𝑞, �̇� + 𝑔 𝑞 + friction model

Robotics 2 2

𝑀 𝑞 �̈� + 𝑛 𝑞, �̇� = 𝑢

𝑞! 𝑡 → �̇�! 𝑡 , �̈�!(𝑡)

𝑢' = 𝑀 𝑞' �̈�' + 𝑛(𝑞', �̇�')

In practice ...

n initial state is “not matched” to the desired trajectory 𝑞!(𝑡)
n disturbances on the actuators, from unexpected collisions,

truncation errors on data, …
n inaccurate knowledge of robot dynamic parameters 𝜋 ⟶ 1𝜋

(link masses, inertias, center of mass positions)
n unknown value of the carried payload
n presence of unmodeled dynamics (complex friction

phenomena, transmission elasticity, …)

a number of differences from the nominal condition

Robotics 2 3

require the use of feedback information

Introducing feedback

with !𝑀, #𝑛 estimates of terms
(or coefficients) in the dynamic model

note: (𝑢! can be computed off line [e.g., by %𝑁𝐸!(𝑞" , �̇�" , �̈�")]

feedback is introduced to make the control scheme more robust

different possible implementations depending on
amount of computational load share

§ OFF LINE (open loop)
§ ON LINE (closed loop)

two-step control design:
1. compensation (feedforward) or cancellation (feedback) of nonlinearities
2. synthesis of a linear control law stabilizing the trajectory error to zero

Robotics 2 4

1𝑢! = 4𝑀 𝑞! �̈�! + 1𝑛(𝑞! , �̇�!)

A series of trajectory controllers
(assuming the nominal case: !𝑀 = 𝑀, #𝑛 = 𝑛)

1. inverse dynamics compensation (FFW) + PD

2. inverse dynamics compensation (FFW) + variable PD

3. feedback linearization (FBL) + [PD+FFW] = “COMPUTED TORQUE”

4. feedback linearization (FBL) + [PID+FFW]

local stabilization
of trajectory error

𝑒 𝑡 = 𝑞! 𝑡 − 𝑞 𝑡
global if additional

conditions on
𝐾" and 𝐾#

Robotics 2 5

𝑢 = 1𝑢! +𝐾" 𝑞! − 𝑞 +𝐾#(�̇�! − �̇�)

𝑢 = 1𝑢! + 4𝑀 𝑞! 𝐾" 𝑞! − 𝑞 +𝐾#(�̇�! − �̇�)

𝑢 = 4𝑀 𝑞 �̈�! +𝐾" 𝑞! − 𝑞 +𝐾#(�̇�! − �̇�) + 1𝑛(𝑞, �̇�)

𝑢 = !𝑀 𝑞 �̈�" + 𝐾# 𝑞" − 𝑞 + 𝐾$ �̇�" − �̇� + 𝐾%3 𝑞" − 𝑞 𝑑𝑡 + #𝑛(𝑞, �̇�)

global stabilization for any 𝐾" > 0, 𝐾# > 0 (and not too large 𝐾$ > 0)
more robust to small uncertainties/disturbances, even if more complex to implement in real time

+

_

𝑢
ROBOT (or its DYNAMIC MODEL)

Feedback linearization control

symmetric and
positive definite
matrices 𝐾! , 𝐾"

Robotics 2 6

�̇��̈� 𝑞
𝑀%&(𝑞)

+

+

𝑎 !𝑀(𝑞)

#𝑛(𝑞, �̇�)

𝑛(𝑞, �̇�)

𝐾"
𝐾!

+

_

�̈�" + 𝐾$�̇�"
+ 𝐾#𝑞"

in nominal
conditions

(#𝑀 = 𝑀, &𝑛 = 𝑛)
nonlinear robot dynamics nonlinear control law

linear and
decoupled

system

𝑀 𝑞 �̈� + 𝑛 𝑞, �̇� = 𝑢 = 𝑀 𝑞 𝑎 + 𝑛 𝑞, �̇� �̈� = 𝑎

global asymptotic
stabilization of
tracking error

𝑎 = �̈�" + 𝐾$ �̇�" − �̇� + 𝐾# 𝑞" − 𝑞

Interpretation in the linear domain

𝐾"
𝐾#

+

under feedback linearization control, the robot has a dynamic behavior that is
invariant, linear and decoupled in its whole state space (∀(𝑞, �̇�))

> 0, diagonal

each joint coordinate 𝑞& evolves independently from the others, forced by 𝑎&

𝑎 = �̈� 𝑞

error transients 𝑒& = 𝑞"& − 𝑞& → 0 exponentially, prescribed by 𝐾!# , 𝐾"# choice
linearity

decoupling

a unitary mass (𝑚 = 1) in the joint space !!

Robotics 2 7

�̈�! + 𝐾"�̇�! + 𝐾#𝑞!
�̇�

�̈� + 𝐾" �̇� + 𝐾#𝑒 = 0 ⟺ �̈�$+𝐾"$ ̇𝑒$ + 𝐾#$𝑒$ = 0

_

𝐾"
𝐾#

+ 𝑎 = �̈� 𝑞

Robotics 2 8

�̈�! + 𝐾"�̇�! + 𝐾#𝑞!
�̇�

Addition of an integral term: PID
whiteboard…

_

+

+
𝐾%

+
_

𝑞! 𝑒

> 0,
diagonal

�̈� = 𝑎 = �̈�$ + 𝐾" �̇�$ − �̇� + 𝐾! 𝑞$ − 𝑞 + 𝐾% 0 𝑞$ − 𝑞 𝑑𝜏

�̈�# + 𝐾"# �̇�# + 𝐾!#𝑒# + 𝐾%# 0𝑒#𝑑𝜏 = 0⇒
(2)

𝑒 = 𝑞$ − 𝑞

𝑒# = 𝑞$# − 𝑞# (𝑖 = 1, . . , 𝑁)⇒
(1)

𝑠& + 𝐾"#𝑠 + 𝐾!# + 𝐾%#
1
𝑠 𝑒# 𝑠 = 0ℒ[𝑒# 𝑡]⇒(3)

𝑠' + 𝐾"#𝑠& + 𝐾!#𝑠 + 𝐾%# 𝑒# 𝑠 = 0𝑠 × ⇒
(4)

1 𝐾!"
𝐾#" 𝐾$"

𝐾$"
(𝐾#"𝐾!" − 𝐾$")/𝐾#"

3
2
1
0

⇒
(5)

exponential
stability

conditions by
Routh criterion

⇒ (6)

⇒ 𝐾!" > 0,𝐾#" > 0,
0 < 𝐾$" < 𝐾!"𝐾#"

feedback
linearization robot

𝑞! 𝑡 , �̇�! 𝑡 ,
�̈�! 𝑡 𝑞

�̇�

n desired joint trajectory can be generated from Cartesian data

n real-time computation by Newton-Euler algo: 𝑢&'(= 1𝑁𝐸𝛼(𝑞, �̇�, 𝑎)
n simulation of feedback linearization control

Remarks

𝑞$(𝑡)

Hint: there is no use in simulating this control law in the ideal case (/𝜋 = 𝜋); robot behavior
will be identical to the linear and decoupled case of stabilized double integrators!!

Robotics 2 9

true parameters 𝜋

estimated parameters /𝜋

�̈�" 𝑡 , �̇�" 0 , 𝑝"(0)

�̇�$(𝑡)
�̈�$(𝑡)

�̇�$(0) 𝑞$(0) 𝑞$ 0 = 𝑓() 𝑝$ 0
�̇�$ 0 = 𝐽() 𝑞$ 0 �̇�$ 0
�̈�$ 𝑡 = 𝐽() 𝑞$ �̈�$ 𝑡 − ̇𝐽(𝑞$)�̇�$

Further comments
n choice of the diagonal elements of 𝐾𝑃, 𝐾" (and 𝐾𝐼)

n shaping the error transients, with an eye also to motor saturations...

n parametric identification
n to be done in advance, using the property of linearity in the dynamic

coefficients of the robot dynamic model
n choice of the sampling time of a digital implementation

n compromise between computational time and tracking accuracy,
typically 𝑇4 = 0.5 ÷ 10 ms

n exact linearization by (state) feedback is a general technique
of nonlinear control theory
n can be used for robots with elastic joints, wheeled mobile robots, ...
n non-robotics applications: satellites, induction motors, helicopters, ...

critically damped transient
𝑒(𝑡) = 𝑞$(𝑡) − 𝑞(𝑡)

𝑡

𝑒(0)

Robotics 2 10

Another example of feedback linearization design
n dynamic model of robots with elastic joints

n 𝑞 = link position
n 𝜃 = motor position (after reduction gears)
n 𝐵* = diagonal matrix (> 0) of inertia of the (balanced) motors
n 𝐾 = diagonal matrix (> 0) of (finite) stiffness of the joints

n is there a control law that achieves exact linearization via feedback?

2𝑁 generalized
coordinates (𝑞, 𝜃)

YES and it yields
linear and decoupled system:
𝑁 chains of 4 integrators
(to be stabilized by linear

control design)

Robotics 2 11

(1)
(2)

4𝑁 state
variables

𝑥 = (𝑞, 𝜃, �̇�, �̇�)
𝑀 𝑞 �̈� + 𝑐 𝑞, �̇� + 𝑔 𝑞 + 𝐾 𝑞 − 𝜃 = 0

𝐵)�̈� + 𝐾 𝜃 − 𝑞 = 𝑢

𝑢 = 𝛼 𝑞, 𝜃, �̇�, �̇� + 𝛽 𝑞, 𝜃, �̇�, �̇� 𝑎

Hint: differentiate (1) w.r.t. time until motor acceleration �̈� appears;
substitute this from (2); choose 𝑢 so as to cancel all nonlinearities …

𝑑*𝑞$
𝑑𝑡*

= 𝑎$, 𝑖 = 1, . . , 𝑁

Alternative global trajectory controller

n global asymptotic stability of 𝑒, �̇� = (0,0) (trajectory tracking)
n proven by Lyapunov +Barbalat (time-varying system) +LaSalle
n does not produce a complete cancellation of nonlinearities

n the variables �̇� and �̈� that appear linearly in the model are evaluated
on the desired trajectory

n does not induce a linear and decoupled behavior of the
trajectory error 𝑒 𝑡 = 𝑞!(𝑡) − 𝑞(𝑡) in the closed-loop system

n however, it lends itself more easily to an adaptive version
n computation: by 4× standard or 1×modified NE algorithm

symmetric and
positive definite matrices

SPECIAL factorization such that
�̇� − 2𝑆 is skew-symmetric

Robotics 2 12

𝑢 = 𝑀 𝑞 �̈�! + 𝑆 𝑞, �̇� �̇�! + 𝑔 𝑞 + 𝐹$�̇�! +𝐾"𝑒 + 𝐾#�̇�

Analysis of asymptotic stability
of the trajectory error - 1

n Lyapunov candidate and its time derivative (with 𝑒 = 𝑞" − 𝑞)

robot dynamics (including friction)

control law

n the closed-loop system equations yield

n substituting and using the skew-symmetric property of �̇� − 2𝑆

Robotics 2 13

⇒

𝑀 𝑞 �̈� + 𝑆 𝑞, �̇� �̇� + 𝑔 𝑞 + 𝐹+�̇� = 𝑢
𝑢 = 𝑀 𝑞 �̈�! + 𝑆 𝑞, �̇� �̇�! + 𝑔 𝑞 + 𝐹+�̇�! + 𝐾#𝑒 + 𝐾" �̇�

𝑉 =
1
2 �̇�

5𝑀 𝑞 �̇� +
1
2 𝑒

5𝐾#𝑒 ≥ 0 �̇� =
1
2 �̇�

5�̇� 𝑞 �̇� + �̇�5𝑀 𝑞 �̈� + 𝑒5𝐾#�̇�

𝑀 𝑞 �̈� = −𝑆 𝑞, �̇� �̇� − 𝐾" + 𝐹+ �̇� − 𝐾#𝑒

�̇� = −�̇�, 𝐾" + 𝐹+ �̇� ≤ 0 �̇� = 0 ⇔ �̇� = 0
n since the system is time-varying (due to 𝑞"(𝑡)), direct application

of LaSalle theorem is NOT allowed ⇒ use Barbalat lemma…

error state 𝑥

𝑞 = 𝑞! 𝑡 − 𝑒, �̇� = �̇�! 𝑡 − �̇� 𝑉 = 𝑉 𝑒, ̇𝑒, 𝑡 = 𝑉(𝑥, 𝑡)⇒

⇒ go to
slide 10 in

block 8

Analysis of asymptotic stability
of the trajectory error - 2

n since i) 𝑉 is lower bounded and ii) �̇� ≤ 0, we have to check only
condition iii) in order to apply Barbalat lemma

Robotics 2 14

n from i) + ii), 𝑉 is bounded ⇒ 𝑒 and �̇� are bounded
n assume that the desired trajectory has bounded velocity �̇�"

⇒ �̇� is
bounded

then also �̈� will be bounded (in norm) since

... is this bounded? �̈� = −2�̇�,(𝐾" + 𝐹+)�̈�

n using the following two properties of dynamic model terms
0 < 𝛼7 ≤ 𝑀89(𝑞) ≤ 𝛼: < ∞ 𝑆(𝑞, �̇�) ≤ 𝛼; �̇�

bounded bounded boundedbounded
in norm by 𝛼%

bounded
in norm by 𝛼& �̇� bounded

�̈� = −𝑀-.(𝑞) 𝑆 𝑞, �̇� �̇� + 𝐾#𝑒 + (𝐾" + 𝐹+)�̇�

⇒ lim
>→@

�̇� 𝑡 = 0

Analysis of asymptotic stability
of the trajectory error – end of proof

n we can conclude by proceeding as in LaSalle theorem

Robotics 2 15

n the closed-loop dynamics in this situation is
�̇� = 0 ⇔ �̇� = 0

𝑀 𝑞 �̈� = −𝐾"𝑒

is the largest
invariant set in �̇� = 0

(global) asymptotic tracking
will be achieved

⟹ �̈� = 0 ⇔ 𝑒 = 0 (𝑒, �̇�) = (0, 0)

Regulation as a special case
n what happens to the control laws designed for trajectory

tracking when 𝑞𝑑 is constant? are there simplifications?
n feedback linearization

n no special simplifications
n however, this is a solution to the regulation problem with

exponential stability (and decoupled transients at each joint!)
n alternative global controller

n we recover the simpler PD + gravity cancellation control law!!

Robotics 2 16

𝑢 = 𝐾"(𝑞! − 𝑞) − 𝐾#�̇� + 𝑔 𝑞

𝑢 = 𝑀 𝑞 𝐾" 𝑞! − 𝑞 −𝐾#�̇� + 𝑐 𝑞, �̇� + 𝑔(𝑞)

Trajectory execution without a model
n is it possible to accurately reproduce a desired smooth joint-

space reference trajectory with reduced or no information on
the robot dynamic model?

n this is feasible (and possibly simple) in case of repetitive motion
tasks over a finite interval of time
n trials are performed iteratively, storing the trajectory error

information of the current execution [𝑘-th iteration] and
processing it off line before the next trial [(𝑘 + 1)-iteration] starts

n the robot should be reinitialized in the same initial state at the
beginning of each trial (typically, with �̇� = 0)

n the control law is made of a non-model based part (often, a
decentralized PD law) + a time-varying feedforward which is
updated before every trial

n this scheme is called iterative trajectory learning
Robotics 2 17

Scheme of iterative trajectory learning
n control design can be illustrated on a SISO linear system

in the Laplace domain

Robotics 2 18

𝑷(𝒔)𝑪(𝒔)

closed-loop system without learning
(𝐶(𝑠) is, e.g., a PD control law) 𝑊 𝑠 =

𝑦(𝑠)
𝑦"(𝑠)

=
𝑃 𝑠 𝐶(𝑠)

1 + 𝑃 𝑠 𝐶(𝑠)

control law at iteration 𝑘𝑢A 𝑠 = 𝑢AB 𝑠 + 𝑣A 𝑠 = 𝐶 𝑠 𝑒A 𝑠 + 𝑣A 𝑠

system output at iteration 𝑘𝑦A 𝑠 = 𝑊 𝑠 𝑦" 𝑠 +
𝑃(𝑠)

1 + 𝑃 𝑠 𝐶(𝑠) 𝑣A 𝑠

“plug-in” signal:
𝑣&(𝑡) ≡ 0 at

first (𝑘 = 1) iteration

𝑷(𝒔)𝑪(𝒔)

n algebraic manipulations on block diagram signals in the Laplace domain:
𝑥 𝑠 = ℒ 𝑥(𝑡) , 𝑥 = 𝑦! , 𝑦, 𝑢', 𝑣, 𝑒 ⇒ 𝑦! , 𝑦(, 𝑢(' , 𝑣(, 𝑒(, with transfer functions

Robotics 2 19

Background math on feedback loops
whiteboard…

𝑦 𝑠 = 𝑃 𝑠 𝑢 𝑠 = 𝑃 𝑠 𝑣 𝑠 + 𝑢' 𝑠
= 𝑃 𝑠 𝑣 𝑠 + 𝑃 𝑠 𝐶 𝑠 𝑒 𝑠
= 𝑃 𝑠 𝑣 𝑠 + 𝑃 𝑠 𝐶 𝑠 𝑦(𝑠 − 𝑦(𝑠)

§ feedback control law at iteration 𝑘

§ error at iteration 𝑘

𝑢)' 𝑠 = 𝐶 𝑠 𝑦(𝑠 − 𝑦) 𝑠 = 𝐶 𝑠 𝑦(𝑠 − 𝑃 𝑠 𝐶(𝑠) 𝑣) 𝑠 + 𝑢)' 𝑠

(1 + 𝑃 𝑠 𝐶 𝑠) 𝑦 𝑠 =
= 𝑃 𝑠 𝑣 𝑠 + 𝑃 𝑠 𝐶 𝑠 𝑦(𝑠

⇒

𝑦 𝑠 =
𝑃 𝑠 𝐶 𝑠

1 + 𝑃 𝑠 𝐶 𝑠 𝑦(𝑠 +
𝑃 𝑠

1 + 𝑃 𝑠 𝐶 𝑠 𝑣 𝑠 = 𝑊 𝑠 𝑦(𝑠 +𝑊* 𝑠 𝑣(𝑠)⇒

𝑢)' 𝑠 =
𝐶 𝑠

1 + 𝑃 𝑠 𝐶 𝑠 𝑦(𝑠 −
𝑃 𝑠 𝐶 𝑠

1 + 𝑃 𝑠 𝐶 𝑠 𝑣) 𝑠 = 𝑊+ 𝑠 𝑦(𝑠 −𝑊 𝑠 𝑣) 𝑠⇒

𝑒) 𝑠 = 𝑦(𝑠 − 𝑦) 𝑠 = 𝑦(𝑠 − 𝑊 𝑠 𝑦(𝑠 +𝑊* 𝑠 𝑣) 𝑠 = 1 −𝑊 𝑠 𝑦(𝑠 −𝑊* 𝑠 𝑣) 𝑠

𝑊,(𝑠) = 1/(1 + 𝑃 𝑠 𝐶 𝑠)

Learning update law
n the update of the feedforward term is designed as

Robotics 2 20

with 𝛼 and 𝛽 suitable filters
(also non-causal, of the FIR type) 𝑣01. 𝑠 = 𝛼(𝑠)𝑢0

2 𝑠 + 𝛽(𝑠)𝑣0 𝑠

n if a contraction condition can be enforced

then convergence is obtained for 𝑘 → ∞
(for all 𝑠 = 𝑗𝜔 frequencies such that ...) 𝛽 𝑠 − 𝛼 𝑠 𝑊(𝑠) < 1

recursive expression
of feedforward term 𝑣01) 𝑠 =

𝛼 𝑠 𝐶 𝑠
1 + 𝑃 𝑠 𝐶 𝑠 𝑦$ 𝑠 + (𝛽 𝑠 − 𝛼 𝑠 𝑊 𝑠)𝑣0(𝑠)

recursive expression
of error 𝑒 = 𝑦" − 𝑦

𝑒01) 𝑠 =
1 − 𝛽 𝑠

1 + 𝑃 𝑠 𝐶 𝑠
𝑦$ 𝑠 + 𝛽 𝑠 − 𝛼 𝑠 𝑊 𝑠 𝑒0(𝑠)

𝑣2 𝑠 =
𝑦$ 𝑠
𝑃(𝑠)

𝛼 𝑠 𝑊 𝑠
1 − 𝛽 𝑠 + 𝛼 𝑠 𝑊 𝑠

𝑒2 𝑠 =
𝑦$ 𝑠

1 + 𝑃 𝑠 𝐶(𝑠)
1 − 𝛽 𝑠

1 − 𝛽 𝑠 + 𝛼 𝑠 𝑊 𝑠

Robotics 2 21

𝑣()& 𝑠 = 𝛼 𝑠 𝑢(' 𝑠 + 𝛽 𝑠 𝑣(𝑠 = 𝛼 𝑠 𝐶 𝑠 𝑒(𝑠 + 𝛽 𝑠 𝑣(𝑠

𝑦()& 𝑠 = 𝑃 𝑠 𝑣()& 𝑠 + 𝑢()&
' 𝑠 = 𝑃 𝑠 𝛼 𝑠 𝑢(

' 𝑠 + 𝛽 𝑠 𝑣(𝑠 + 𝑢()&
' 𝑠

Proof of recursive updates
whiteboard…

§ recursive expression for the error 𝑒0

§ recursive expression for the feedworward 𝑣0

𝑒(𝑠 = 𝑦! 𝑠 − 𝑦(𝑠 = 𝑦! 𝑠 − 𝑃(𝑠)(𝑣(𝑠 + 𝑢(' 𝑠)

𝑣(𝑠 =
1

𝑃 𝑠
𝑦! 𝑠 − 𝑒(𝑠 − 𝑢(

' 𝑠⇒

𝑒()& 𝑠 = 𝑦! 𝑠 − 𝑦()& 𝑠

= (1 − 𝛽 𝑠) 𝑦! 𝑠 − 𝛼 𝑠 − 𝛽 𝑠 𝑃 𝑠 𝐶 𝑠 − 𝛽 𝑠 𝑒(𝑠 − 𝑃 𝑠 𝐶(𝑠)𝑒()& 𝑠

𝑒()& 𝑠 =
1 − 𝛽 𝑠

1 + 𝑃 𝑠 𝐶 𝑠
𝑦! 𝑠 + 𝛽 𝑠 − 𝛼 𝑠 𝑊 𝑠 𝑒((𝑠)⇒

= 𝑃 𝑠 𝛼 𝑠 𝐶 𝑠 𝑒(𝑠 + 𝛽 𝑠
1

𝑃(𝑠)
𝑦! 𝑠 − 𝑒(𝑠 − 𝛽 𝑠 𝐶 𝑠 𝑒(𝑠 + 𝐶 𝑠 𝑒()&(𝑠)

= 𝛼 𝑠 𝐶 𝑠 𝑊*(𝑠)𝑦! 𝑠 −𝑊+ 𝑠 𝑣(𝑠 + 𝛽 𝑠 𝑣(𝑠

=
𝛼 𝑠 𝐶 𝑠

1 + 𝑃 𝑠 𝐶 𝑠
𝑦! 𝑠 + (𝛽 𝑠 − 𝛼 𝑠 𝑊 𝑠) 𝑣((𝑠)

Robotics 2 22

𝑣()& 𝑠 =
𝛼 𝑠 𝐶 𝑠

1 + 𝑃 𝑠 𝐶 𝑠
𝑦! 𝑠 + (𝛽 𝑠 − 𝛼 𝑠 𝑊 𝑠) 𝑣((𝑠)

Proof of convergence
whiteboard…

from recursive expressions

𝑒()& 𝑠 =
1 − 𝛽 𝑠

1 + 𝑃 𝑠 𝐶 𝑠
𝑦! 𝑠 + 𝛽 𝑠 − 𝛼 𝑠 𝑊 𝑠 𝑒((𝑠)

compute variations from 𝑘 to 𝑘 + 1 (repetitive term in trajectory 𝑦! vanishes!)
∆𝑣()& 𝑠 = 𝑣()& 𝑠 − 𝑣(𝑠 = (𝛽 𝑠 − 𝛼 𝑠 𝑊 𝑠) ∆𝑣((𝑠)

∆𝑒()& 𝑠 = 𝑒()& 𝑠 − 𝑒(𝑠 = 𝛽 𝑠 − 𝛼 𝑠 𝑊 𝑠 ∆𝑒((𝑠)

by contraction mapping condition 𝛽 𝑠 − 𝛼 𝑠 𝑊 𝑠 < 1 ⇒ 𝑣0 → 𝑣2, 𝑒0 → 𝑒2
𝑣, 𝑠 =

𝛼 𝑠 𝐶 𝑠
1 + 𝑃 𝑠 𝐶 𝑠

𝑦! 𝑠 + (𝛽 𝑠 − 𝛼 𝑠 𝑊 𝑠) 𝑣,(𝑠)

𝑒, 𝑠 =
1 − 𝛽 𝑠

1 + 𝑃 𝑠 𝐶 𝑠
𝑦! 𝑠 + 𝛽 𝑠 − 𝛼 𝑠 𝑊 𝑠 𝑒,(𝑠)

𝑣, 𝑠 =
𝑦! 𝑠
𝑃(𝑠)

𝛼 𝑠 𝑊 𝑠
1 − 𝛽 𝑠 + 𝛼 𝑠 𝑊 𝑠

𝑒, 𝑠 =
𝑦! 𝑠

1 + 𝑃 𝑠 𝐶(𝑠)
1 − 𝛽 𝑠

1 − 𝛽 𝑠 + 𝛼 𝑠 𝑊 𝑠⇒ 𝑣, 𝑠 =
𝑦! 𝑠
𝑃(𝑠)

𝛼 𝑠 𝑊 𝑠
1 − 𝛽 𝑠 + 𝛼 𝑠 𝑊 𝑠

𝑒, 𝑠 =
𝑦! 𝑠

1 + 𝑃 𝑠 𝐶(𝑠)
1 − 𝛽 𝑠

1 − 𝛽 𝑠 + 𝛼 𝑠 𝑊 𝑠⇒

Comments on convergence
n if the choice 𝛽 = 1 allows to satisfy the contraction condition, then

convergence to zero tracking error is obtained

and the inverse dynamics command has been learned

Robotics 2 23

n in particular, for α 𝑠 = 1/𝑊(𝑠) convergence would be in 1 iteration only!

n the use of filter β(𝑠) ≠ 1 allows to obtain convergence (but with residual
tracking error) even in presence of unmodeled high-frequency dynamics

n the two filters can be designed from very poor
information on system dynamics, using classic
tools (e.g., Nyquist plots)

𝑒@(𝑠) = 0

𝑣@(𝑠) =
𝑦"(𝑠)
𝑃(𝑠)

Application to robots
n for 𝑁-dof robots modeled as

we choose as (initial = pre-learning) control law

and design the learning filters (at each joint) using
the linear approximation

Robotics 2 24

n initialization of feedforward uses the best estimates

or simply 𝑣% = 0 (in the worst case) at first trial 𝑘 = 1

𝐵& +𝑀(𝑞) �̈� + 𝐹$ + 𝑆(𝑞, �̇�) �̇� + 𝑔 𝑞 = 𝑢

𝑢 = 𝑢' = 𝐾" 𝑞! − 𝑞 +𝐾# �̇�! − �̇� + 1𝑔 𝑞

𝑊$ 𝑠 =
𝑞$(𝑠)
𝑞!$(𝑠)

=
𝐾"$𝑠 + 𝐾#$

S𝐵)$𝑠3 + S𝐹+$ + 𝐾"$ 𝑠 + 𝐾#$

𝑣. = S𝐵) + T𝑀(𝑞!) �̈�! + S𝐹+ + U𝑆(𝑞! , �̇�!) �̇�! + (𝑔 𝑞!

𝑖 = 1,⋯ , 𝑁

Experimental set-up
n joints 2 and 3 of 6R MIMO CRF robot prototype @DIS

Robotics 2 25

50o/s
160o

desired velocity/position for both joints

≈ 90% gravity
balanced

through springs

Harmonic Drives
transmissions

with ratio 160:1

resolvers and
tachometers

DC motors with
current amplifiers

DSP 𝑇𝑐 = 400µs
D/A = 12 bit

R/D = 16 bit/2𝜋
A/D = 11 bit/(rad/s)

high level of
dry friction

De Luca, Paesano, Ulivi: IEEE Trans Ind Elect, 1992

Experimental results

Robotics 2 26

tracking error 𝑒𝑘 reduces for 𝑘 = 1, 3, 6, 12

feedforward 𝑣𝑘 increases for 𝑘 = 3, 6, 12 (zero at 𝑘 = 1)jo
in

t 2
 joint 3

feedback 𝑢03 decreases for 𝑘 = 1, 3, 6, 12

On-line learning control

Robotics 2 27

n re-visitation of the learning idea so as to acquire the missing
dynamic information in model-based trajectory control

n on-line learning approach
n the robot improves tracking performance already while executing the task

in feedback mode

n uses only position measurements from encoders
n no need of joint torque sensors

n machine learning techniques used for
n data collection and organization
n regressor construction for estimating model perturbations

n fast convergence
n starting with a reasonably good robot model

n extensions to underactuated robots or with flexible components

Control with approximate FBL

Robotics 2 28

n dynamic model, its nominal part and (unstructured) uncertainty

𝑀 𝑞 �̈� + 𝑛 𝑞, �̇� = 𝜏 𝑀 = -𝑀 + ∆𝑀 𝑛 = /𝑛 + ∆𝑛

𝜏"#$ = -𝑀 𝑞 𝑎 + /𝑛 𝑞, �̇�
n model-based (approximate) feedback linearization

n resulting closed-loop dynamics with perturbation

�̈� = 𝑎 + 𝛿(𝑞, �̇�, 𝑎)
n control law for tracking 𝑞! 𝑡 is completed by using (at 𝑡 = 𝑡A) a

linear design (PD with feedforward) and a learning regressor 𝜀0
𝑎 = 𝑎% = 𝑢% + 𝜀%

= �̈�!,% +𝐾'(𝑞!,% − 𝑞%) + 𝐾((�̇�!,% − �̇�%) + 𝜀%

𝛿 = 𝑀89 !𝑀 − 𝐼 𝑎 + 𝑀89 #𝑛 − 𝑛

On-line learning scheme

Robotics 2 29

Feedback
Linearization

Gaussian Process
Regression

Data Set Collection
Procedure

Linear Control
for Tracking

𝑞$(𝑡)
+

+

𝜏456,0𝑢0

𝜀0

𝑞0 , �̇�0

𝑞0 , �̇�0𝑢0

𝑋0 , 𝑌0

𝑎0

On-line regressor

Robotics 2 30

n Gaussian Process (GP) regression to estimate the perturbation 𝛿
n from input-output observations that are noisy, with 𝜔 ~𝒩 0, 𝛴8 , the

generated data points at the 𝑘-th control step are

n assuming the ensemble of 𝑛$ observations with a joint Gaussian distribution

n the predictive distribution that approximates 𝛿 �̀� for a generic query �̀� is

𝑋0 = (𝑞0 , �̇�0 , 𝑢0) 𝑌0 = �̈�0 − 𝑢0

𝑌.:59-.
𝑌59

~𝒩 0,
𝐾 𝑘
𝑘, 𝜅(𝑋59 , 𝑋59)

𝜀(S𝑋) ~ 𝒩 𝜇(S𝑋), 𝜎3(S𝑋)
with

𝜇 �̀� = 𝑘: �̀� 𝐾 + 𝛴8 ()𝑌
𝜎& �̀� = 𝜅 �̀�, �̀� − 𝑘: �̀� 𝐾 + 𝛴8 ()𝑘(�̀�)

⇒ 𝜀(= 𝜀(𝑋()

a Kernel
to be chosen

Simulation results

Robotics 2 31

§ Kuka LWR iiwa, 7-dof robot
§ model perturbations: dynamic parameters with ± 20% variation,

uncompensated joint friction
§ 7 separate GPs (one for each joint), each with 21 inputs at every 𝑡 = 𝑡A
§ sinusoidal trajectories for each joint

norm of the joint errors

position
components

in the
Cartesian

space

… at the first and only iteration!

Simulation results

Robotics 2 32

video
(slowed
down)

Proc. of Machine Learning Research, vol. 100 (2020)

Extension to underactuated robots

Robotics 2 33

𝑀;;(𝑞) 𝑀;<(𝑞)
𝑀;<
: (𝑞) 𝑀<<(𝑞)

�̈�;
�̈�< +

𝑛; 𝑞, �̇�
𝑛< 𝑞, �̇�

= 𝜏
0

uk akqd(t)

§ planner optimizes motion of passive joints (at every iteration)
§ controller for active joints with partial feedback linearization
§ two regressors (on/off-line) for learning the required acceleration

corrections for active and passive joints

Experiments on the Pendubot

Robotics 2 34

§ Pendubot, 2-dof robot with passive second joint
§ swing-up maneuvers from down-down to a new equilibrium state

⇒ up-up

⇒ down-up

Experimental results

Robotics 2 35

video

convergence in 2 iterations! latest video with more simulations & experiments
on YouTube https://youtu.be/1aKG__8gfvk

IEEE Robotics and Automation Letters, vol. 7(1), 2022

https://youtu.be/1aKG__8gfvk

