Robotics 2

Trajectory Tracking Control

Prof. Alessandro De Luca

Dipartimento di Ingegneria Informatica
automatica e gestionale antonio Ruberti
SAPIENZA
UNIVERSITÀ DI ROMA

Inverse dynamics control

given the robot dynamic model with N joints

$$
\overbrace{c(q, \dot{q})+g(q)+\text { friction model }}^{M(q) \ddot{q}+n(q, \dot{q})=u}
$$

and a twice-differentiable desired trajectory for $t \in[0, T]$

$$
q_{d}(t) \rightarrow \quad \dot{q}_{d}(t), \ddot{q}_{d}(t)
$$

applying the feedforward torque in nominal conditions

$$
u_{d}=M\left(q_{d}\right) \ddot{q}_{d}+n\left(q_{d}, \dot{q}_{d}\right)
$$

yields exact reproduction of the desired motion, provided that $q(0)=q_{d}(0), \dot{q}(0)=\dot{q}_{d}(0)$ (initial matched state)

In practice ...

a number of differences from the nominal condition

- initial state is "not matched" to the desired trajectory $q_{d}(t)$
- disturbances on the actuators, from unexpected collisions, truncation errors on data, ...
- inaccurate knowledge of robot dynamic parameters $\pi \rightarrow \hat{\pi}$ (link masses, inertias, center of mass positions)
- unknown value of the carried payload
- presence of unmodeled dynamics (complex friction phenomena, transmission elasticity, ...)
require the use of feedback information

Introducing feedback

$$
\hat{u}_{d}=\widehat{M}\left(q_{d}\right) \ddot{q}_{d}+\widehat{n}\left(q_{d}, \dot{q}_{d}\right)
$$

with \widehat{M}, \hat{n} estimates of terms (or coefficients) in the dynamic model note: \hat{u}_{d} can be computed off line [e.g., by $\widehat{N E}_{\alpha}\left(q_{d}, \dot{q}_{d}, \ddot{q}_{d}\right)$]
feedback is introduced to make the control scheme more robust
different possible implementations depending on amount of computational load share

```
- OFF LINE ( }\Leftrightarrow\mathrm{ | open loop)
- ON LINE ( \(\Leftrightarrow\) closed loop)
```

two-step control design:

1. compensation (feedforward) or cancellation (feedback) of nonlinearities
2. synthesis of a linear control law stabilizing the trajectory error to zero

A series of trajectory controllers

(assuming the nominal case: $\widehat{M}=M, \hat{n}=n$)

1. inverse dynamics compensation (FFW) + PD

$$
u=\hat{u}_{d}+K_{P}\left(q_{d}-q\right)+K_{D}\left(\dot{q}_{d}-\dot{q}\right)
$$

local stabilization of trajectory error $e(t)=q_{d}(t)-q(t)$ global if additional
2. inverse dynamics compensation (FFW) + variable PD

$$
u=\widehat{u}_{d}+\widehat{M}\left(q_{d}\right)\left[K_{P}\left(q_{d}-q\right)+K_{D}\left(\dot{q}_{d}-\dot{q}\right)\right]
$$

3. feedback linearization (FBL) + [PD+FFW] = "COMPUTED TORQUE"

$$
u=\widehat{M}(q)\left[\ddot{q}_{d}+K_{P}\left(q_{d}-q\right)+K_{D}\left(\dot{q}_{d}-\dot{q}\right)\right]+\hat{n}(q, \dot{q})
$$

4. feedback linearization (FBL) + [PID+FFW]

$$
u=\widehat{M}(q)\left[\ddot{q}_{d}+K_{P}\left(q_{d}-q\right)+K_{D}\left(\dot{q}_{d}-\dot{q}\right)+K_{I} \int\left(q_{d}-q\right) d t\right]+\hat{n}(q, \dot{q})
$$

global stabilization for any $K_{P}>0, K_{D}>0$ (and not too large $K_{I}>0$)
more robust to small uncertainties/disturbances, even if more complex to implement in real time

Feedback linearization control

Interpretation in the linear domain

under feedback linearization control, the robot has a dynamic behavior that is invariant, linear and decoupled in its whole state space $(\forall(q, \dot{q}))$

linearity

a unitary mass ($m=1$) in the joint space !!
error transients $e_{i}=q_{d i}-q_{i} \rightarrow 0$ exponentially, prescribed by $K_{P i}, K_{D i}$ choice

decoupling

each joint coordinate q_{i} evolves independently from the others, forced by a_{i}

$$
\ddot{e}+K_{D} \dot{e}+K_{P} e=0 \Leftrightarrow \ddot{e}_{i}+K_{D i} \dot{e}_{i}+K_{P i} e_{i}=0
$$

Addition of an integral term: PID

 whiteboard...

Remarks

- desired joint trajectory can be generated from Cartesian data

$$
q_{d}(0)=f^{-1}\left(p_{d}(0)\right)
$$

$$
\ddot{p}_{d}(t), \dot{p}_{d}(0), p_{d}(0)
$$

$$
\dot{q}_{d}(0)=J^{-1}\left(q_{d}(0)\right) \dot{p}_{d}(0)
$$

$$
\ddot{q}_{d}(t)=J^{-1}\left(q_{d}\right)\left[\ddot{p}_{d}(t)-j\left(q_{d}\right) \dot{q}_{d}\right]
$$

- real-time computation by Newton-Euler algo: $u_{F B L}=\widehat{N E}(q, \dot{q}, a)$
- simulation of feedback linearization control

Hint: there is no use in simulating this control law in the ideal case $(\hat{\pi}=\pi)$; robot behavior will be identical to the linear and decoupled case of stabilized double integrators!!

Further comments

- choice of the diagonal elements of K_{P}, K_{D} (and K_{I})
- shaping the error transients, with an eye also to motor saturations...

$$
e(t)=q_{d}(t)-q(t)<e(0) \quad \text { critically damped transient }
$$

- parametric identification
- to be done in advance, using the property of linearity in the dynamic coefficients of the robot dynamic model
- choice of the sampling time of a digital implementation
- compromise between computational time and tracking accuracy, typically $T_{c}=0.5 \div 10 \mathrm{~ms}$
- exact linearization by (state) feedback is a general technique of nonlinear control theory
- can be used for robots with elastic joints, wheeled mobile robots, ...
- non-robotics applications: satellites, induction motors, helicopters, ...

Another example of feedback linearization design

- dynamic model of robots with elastic joints
- $q=$ link position $\} 2 N$ generalized
- $\theta=$ motor position (after reduction gears) $\int \operatorname{coordinates~}(q, \theta)$
- $B_{m}=$ diagonal matrix (>0) of inertia of the (balanced) motors
- $K=$ diagonal matrix (>0) of (finite) stiffness of the joints

$$
\begin{array}{r}
4 N \text { state } \\
\text { variables } \tag{2}\\
=(q, \theta, \dot{q}, \dot{\theta})
\end{array}\left\{\begin{array}{r}
M(q) \ddot{q}+c(q, \dot{q})+g(q)+K(q-\theta)=0 \\
B_{m} \ddot{\theta}+K(\theta-q)=u
\end{array}\right.
$$

- is there a control law that achieves exact linearization via feedback?

$$
u=\alpha(q, \theta, \dot{q}, \dot{\theta})+\beta(q, \theta, \dot{q}, \dot{\theta}) a
$$

YES and it yields $\frac{d^{4} q_{i}}{d t^{4}}=a_{i}, \quad i=1, \ldots, N$| $\begin{array}{c}\text { linear and decoupled system: } \\ N \text { chains of } 4 \text { integrators } \\ \text { (to be stabilized by linear } \\ \text { control design) }\end{array}$ |
| :---: |

Hint: differentiate (1) w.r.t. time until motor acceleration $\ddot{\theta}$ appears; substitute this from (2); choose u so as to cancel all nonlinearities ...

Alternative global trajectory controller

$$
\begin{array}{cc}
u=M(q) \ddot{q}_{d}+S(q, \dot{q}) \dot{q}_{d}+g(q)+F_{V} \dot{q}_{d}+K_{P} e+K_{D} \dot{e} \\
\uparrow & \uparrow \quad \uparrow \\
\text { SPECIAL factorization such that } & \text { symmetric and } \\
\dot{M}-2 S \text { is skew-symmetric } & \text { positive definite matrices }
\end{array}
$$

- global asymptotic stability of $(e, \dot{e})=(0,0)$ (trajectory tracking)
- proven by Lyapunov +Barbalat (time-varying system) +LaSalle
- does not produce a complete cancellation of nonlinearities
- the variables \dot{q} and \ddot{q} that appear linearly in the model are evaluated on the desired trajectory
- does not induce a linear and decoupled behavior of the trajectory error $e(t)=q_{d}(t)-q(t)$ in the closed-loop system
- however, it lends itself more easily to an adaptive version
- computation: by $4 \times$ standard or $1 \times$ modified NE algorithm

Analysis of asymptotic stability

of the trajectory error - 1
$M(q) \ddot{q}+S(q, \dot{q}) \dot{q}+g(q)+F_{V} \dot{q}=u$ robot dynamics (including friction) control law $u=M(q) \ddot{q}_{d}+S(q, \dot{q}) \dot{q}_{d}+g(q)+F_{V} \dot{q}_{d}+K_{P} e+K_{D} \dot{e}$

- Lyapunov candidate and its time derivative (with $e=q_{d}-q$)

$$
V=\frac{1}{2} \dot{e}^{T} M(q) \dot{e}+\frac{1}{2} e^{T} K_{P} e \geq 0 \Rightarrow \dot{V}=\frac{1}{2} \dot{e}^{T} \dot{M}(q) \dot{e}+\dot{e}^{T} \underbrace{M(q) \ddot{e}}+e^{T} K_{P} \dot{e}
$$

- the closed-loop system equations yield

$$
M(q) \ddot{e}=-S(q, \dot{q}) \dot{e}-\left(K_{D}+F_{V}\right) \dot{e}-K_{P} e
$$

- substituting and using the skew-symmetric property of $\dot{M}-2 S$

$$
\dot{V}=-\dot{e}^{T}\left(K_{D}+F_{V}\right) \dot{e} \leq 0 \quad \dot{V}=0 \Leftrightarrow \dot{e}=0
$$

- since the system is time-varying (due to $q_{d}(t)$), direct application of LaSalle theorem is NOT allowed \Rightarrow use Barbalat lemma...

$$
q=q_{d}(t)-e, \dot{q}=\dot{q}_{d}(t)-\dot{e} \Rightarrow V=V(\underbrace{e,}, \dot{e}, t)=V(x, t)
$$

$$
\Rightarrow \text { go to }
$$

slide 10 in block 8

Analysis of asymptotic stability

of the trajectory error - 2

- since i) V is lower bounded and ii) $\dot{V} \leq 0$, we have to check only condition iii) in order to apply Barbalat lemma

$$
\ddot{V}=-2 \dot{e}^{T}\left(K_{D}+F_{V}\right) \ddot{e} \quad \ldots \text { is this bounded? }
$$

- using the following two properties of dynamic model terms

$$
0<\alpha_{m} \leq\left\|M^{-1}(q)\right\| \leq \alpha_{M}<\infty \quad\|S(q, \dot{q})\| \leq \alpha_{S}\|\dot{q}\|
$$

then also \ddot{e} will be bounded (in norm) since

$$
\ddot{e}=-M^{-1}(q)\left[S(q, \dot{q}) \dot{e}+K_{P} e+\left(K_{D}+F_{V}\right) \dot{e}\right]
$$

Analysis of asymptotic stability of the trajectory error - end of proof

- we can conclude by proceeding as in LaSalle theorem

$$
\dot{V}=0 \Leftrightarrow \dot{e}=0
$$

- the closed-loop dynamics in this situation is

$$
\begin{gathered}
M(q) \ddot{e}=-K_{P} e \\
\Rightarrow \quad \ddot{e}=0 \Leftrightarrow e=0 \quad \Rightarrow \begin{array}{c}
(e, \dot{e})=(0,0) \\
\text { is the largest } \\
\text { invariant set in } \dot{V}=0
\end{array}
\end{gathered}
$$

(global) asymptotic tracking will be achieved

Regulation as a special case

- what happens to the control laws designed for trajectory tracking when q_{d} is constant? are there simplifications?
- feedback linearization

$$
u=M(q)\left[K_{P}\left(q_{d}-q\right)-K_{D} \dot{q}\right]+c(q, \dot{q})+g(q)
$$

- no special simplifications
- however, this is a solution to the regulation problem with exponential stability (and decoupled transients at each joint!)
- alternative global controller

$$
u=K_{P}\left(q_{d}-q\right)-K_{D} \dot{q}+g(q)
$$

- we recover the simpler PD + gravity cancellation control law!!

Trajectory execution without a model

- is it possible to accurately reproduce a desired smooth jointspace reference trajectory with reduced or no information on the robot dynamic model?
- this is feasible (and possibly simple) in case of repetitive motion tasks over a finite interval of time
- trials are performed iteratively, storing the trajectory error information of the current execution [k-th iteration] and processing it off line before the next trial [$(k+1)$-iteration] starts
- the robot should be reinitialized in the same initial state at the beginning of each trial (typically, with $\dot{q}=0$)
- the control law is made of a non-model based part (often, a decentralized PD law) + a time-varying feedforward which is updated before every trial
- this scheme is called iterative trajectory learning

Scheme of iterative trajectory learning

- control design can be illustrated on a SISO linear system in the Laplace domain

$$
W(s)=\frac{y(s)}{y_{d}(s)}=\frac{P(s) C(s)}{1+P(s) C(s)} \quad \begin{gathered}
\text { closed-loop system without learning } \\
(C(s) \text { is, e.g., a PD control law })
\end{gathered}
$$

$u_{k}(s)=u_{k}^{\prime}(s)+v_{k}(s)=C(s) e_{k}(s)+v_{k}(s)$ control law at iteration k $y_{k}(s)=W(s) y_{d}(s)+\frac{P(s)}{1+P(s) C(s)} v_{k}(s) \quad$ system output at iteration k

Background math on feedback loops

whiteboard...

- algebraic manipulations on block diagram signals in the Laplace domain: $x(s)=\mathcal{L}[x(t)], x=\left\{y_{d}, y, u^{\prime}, v, e\right\} \Rightarrow\left\{y_{d}, y_{k}, u_{k}^{\prime}, v_{k}, e_{k}\right\}$, with transfer functions

- feedback control law at iteration k

$$
\begin{aligned}
u_{k}^{\prime}(s)=C & (s)\left(y_{d}(s)-y_{k}(s)\right)=C(s) y_{d}(s)-P(s) C(s)\left(v_{k}(s)+u_{k}^{\prime}(s)\right) \\
& \Rightarrow u_{k}^{\prime}(s)=\frac{C(s)}{1+P(s) C(s)} y_{d}(s)-\frac{P(s) C(s)}{1+P(s) C(s)} v_{k}(s)=W_{c}(s) y_{d}(s)-W(s) v_{k}(s)
\end{aligned}
$$

- error at iteration k

$$
\begin{aligned}
& \begin{array}{l}
e_{k}(s)=y_{d}(s)-y_{k}(s)=y_{d}(s)-\left(W(s) y_{d}(s)+W_{v}(s) v_{k}(s)\right)=(1-W(s)) y_{d}(s)-W_{v}(s) v_{k}(s) \\
\text { botics 2 } \\
W_{e}(s)=1 /(1+P(s) C(s))
\end{array}
\end{aligned}
$$

Learning update law

- the update of the feedforward term is designed as

$$
v_{k+1}(s)=\alpha(s) u_{k}^{\prime}(s)+\beta(s) v_{k}(s)
$$

with α and β suitable filters (also non-causal, of the FIR type)
recursive expression of feedforward term

$$
v_{k+1}(s)=\frac{\alpha(s) C(s)}{1+P(s) C(s)} y_{d}(s)+(\beta(s)-\alpha(s) W(s)) v_{k}(s)
$$

recursive expression of error $e=y_{d}-y$

$$
e_{k+1}(s)=\frac{1-\beta(s)}{1+P(s) C(s)} y_{d}(s)+(\beta(s)-\alpha(s) W(s)) e_{k}(s)
$$

- if a contraction condition can be enforced

$$
|\beta(s)-\alpha(s) W(s)|<1 \quad \text { (for all } s=j \omega \text { frequencies such that } \ldots \text {..) }
$$

then convergence is obtained for $k \rightarrow \infty$

$$
v_{\infty}(s)=\frac{y_{d}(s)}{P(s)} \frac{\alpha(s) W(s)}{1-\beta(s)+\alpha(s) W(s)} \quad e_{\infty}(s)=\frac{y_{d}(s)}{1+P(s) C(s)} \frac{1-\beta(s)}{1-\beta(s)+\alpha(s) W(s)}
$$

Proof of recursive updates

whiteboard...

- recursive expression for the feedworward v_{k}

$$
\begin{aligned}
v_{k+1}(s) & =\alpha(s) u_{k}^{\prime}(s)+\beta(s) v_{k}(s)=\alpha(s) C(s) e_{k}(s)+\beta(s) v_{k}(s) \\
& =\alpha(s) C(s)\left[W_{e}(s) y_{d}(s)-W_{v}(s) v_{k}(s)\right]+\beta(s) v_{k}(s) \\
& =\frac{\alpha(s) C(s)}{1+P(s) C(s)} y_{d}(s)+(\beta(s)-\alpha(s) W(s)) v_{k}(s)
\end{aligned}
$$

- recursive expression for the error e_{k}

$$
\begin{aligned}
\begin{aligned}
& e_{k}(s)= y_{d}(s) \\
&-y_{k}(s)=y_{d}(s)-P(s)\left(v_{k}(s)+u_{k}^{\prime}(s)\right) \\
& \Rightarrow v_{k}(s)=\frac{1}{P(s)}\left(y_{d}(s)-e_{k}(s)\right)-u_{k}^{\prime}(s) \\
& y_{k+1}(s)= P(s)\left(v_{k+1}(s)+u_{k+1}^{\prime}(s)\right)=P(s)\left(\alpha(s) u_{k}^{\prime}(s)+\beta(s) v_{k}(s)+u_{k+1}^{\prime}(s)\right) \\
&=P(s)\left(\alpha(s) C(s) e_{k}(s)+\beta(s) \frac{1}{P(s)}\left(y_{d}(s)-e_{k}(s)\right)-\beta(s) C(s) e_{k}(s)+C(s) e_{k+1}(s)\right) \\
& e_{k+1}(s)= y_{d}(s)-y_{k+1}(s) \\
&=(1-\beta(s)) y_{d}(s)-[(\alpha(s)-\beta(s)) P(s) C(s)-\beta(s)] e_{k}(s)-P(s) C(s) e_{k+1}(s) \\
& \Rightarrow e_{k+1}(s)=\frac{1-\beta(s)}{1+P(s) C(s)} y_{d}(s)+(\beta(s)-\alpha(s) W(s)) e_{k}(s)
\end{aligned}
\end{aligned}
$$

Proof of convergence

 whiteboard...from recursive expressions

$$
\begin{aligned}
& v_{k+1}(s)=\frac{\alpha(s) C(s)}{1+P(s) C(s)} y_{d}(s)+(\beta(s)-\alpha(s) W(s)) v_{k}(s) \\
& e_{k+1}(s)=\frac{1-\beta(s)}{1+P(s) C(s)} y_{d}(s)+(\beta(s)-\alpha(s) W(s)) e_{k}(s)
\end{aligned}
$$

compute variations from k to $k+1$ (repetitive term in trajectory y_{d} vanishes!)

$$
\begin{aligned}
& \Delta v_{k+1}(s)=v_{k+1}(s)-v_{k}(s)=(\beta(s)-\alpha(s) W(s)) \Delta v_{k}(s) \\
& \Delta e_{k+1}(s)=e_{k+1}(s)-e_{k}(s)=(\beta(s)-\alpha(s) W(s)) \Delta e_{k}(s)
\end{aligned}
$$

by contraction mapping condition $|\beta(s)-\alpha(s) W(s)|<1 \Rightarrow\left\{v_{k}\right\} \rightarrow v_{\infty},\left\{e_{k}\right\} \rightarrow e_{\infty}$

$$
\begin{aligned}
& v_{\infty}(s)=\frac{\alpha(s) C(s)}{1+P(s) C(s)} y_{d}(s)+(\beta(s)-\alpha(s) W(s)) v_{\infty}(s) \\
& e_{\infty}(s)=\frac{1-\beta(s)}{1+P(s) C(s)} y_{d}(s)+(\beta(s)-\alpha(s) W(s)) e_{\infty}(s)
\end{aligned}
$$

$\Rightarrow \quad v_{\infty}(s)=\frac{y_{d}(s)}{P(s)} \frac{\alpha(s) W(s)}{1-\beta(s)+\alpha(s) W(s)} \quad e_{\infty}(s)=\frac{y_{d}(s)}{1+P(s) C(s)} \frac{1-\beta(s)}{1-\beta(s)+\alpha(s) W(s)}$

Comments on convergence

- if the choice $\beta=1$ allows to satisfy the contraction condition, then convergence to zero tracking error is obtained

$$
e_{\infty}(s)=0
$$

and the inverse dynamics command has been learned

$$
v_{\infty}(s)=\frac{y_{d}(s)}{P(s)}
$$

- in particular, for $\alpha(s)=1 / W(s)$ convergence would be in 1 iteration only!
- the use of filter $\beta(s) \neq 1$ allows to obtain convergence (but with residual tracking error) even in presence of unmodeled high-frequency dynamics
- the two filters can be designed from very poor information on system dynamics, using classic tools (e.g., Nyquist plots)

Application to robots

- for N-dof robots modeled as

$$
\left[B_{m}+M(q)\right] \ddot{q}+\left[F_{V}+S(q, \dot{q})\right] \dot{q}+g(q)=u
$$

we choose as (initial = pre-learning) control law

$$
u=u^{\prime}=K_{P}\left(q_{d}-q\right)+K_{D}\left(\dot{q}_{d}-\dot{q}\right)+\hat{g}(q)
$$

and design the learning filters (at each joint) using the linear approximation

$$
W_{i}(s)=\frac{q_{i}(s)}{q_{d i}(s)}=\frac{K_{D i} s+K_{P i}}{\hat{B}_{m i} s^{2}+\left(\widehat{F}_{V i}+K_{D i}\right) s+K_{P i}} \quad i=1, \cdots, N
$$

- initialization of feedforward uses the best estimates

$$
v_{1}=\left[\hat{B}_{m}+\widehat{M}\left(q_{d}\right)\right] \ddot{q}_{d}+\left[\hat{F}_{V}+\hat{S}\left(q_{d}, \dot{q}_{d}\right)\right] \dot{q}_{d}+\hat{g}\left(q_{d}\right)
$$

or simply $v_{1}=0$ (in the worst case) at first trial $k=1$

Experimental set-up

- joints 2 and 3 of 6R MIMO CRF robot prototype @DIS
$\approx 90 \%$ gravity balanced through springs high level of dry friction

Harmonic Drives transmissions with ratio 160:1

Experimental results

On-line learning control

- re-visitation of the learning idea so as to acquire the missing dynamic information in model-based trajectory control
- on-line learning approach
- the robot improves tracking performance already while executing the task in feedback mode
- uses only position measurements from encoders
- no need of joint torque sensors
- machine learning techniques used for
- data collection and organization
- regressor construction for estimating model perturbations
- fast convergence
- starting with a reasonably good robot model
- extensions to underactuated robots or with flexible components

Control with approximate FBL

- dynamic model, its nominal part and (unstructured) uncertainty

$$
M(q) \ddot{q}+n(q, \dot{q})=\tau \quad M=\widehat{M}+\Delta M \quad n=\hat{n}+\Delta n
$$

- model-based (approximate) feedback linearization

$$
\tau_{F B L}=\widehat{M}(q) a+\hat{n}(q, \dot{q})
$$

- resulting closed-loop dynamics with perturbation

$$
\ddot{q}=a+\delta(q, \dot{q}, a) \leftarrow \delta=\left(M^{-1} \widehat{M}-I\right) a+M^{-1}(\hat{n}-n)
$$

- control law for tracking $q_{d}(t)$ is completed by using (at $t=t_{k}$) a linear design (PD with feedforward) and a learning regressor ε_{k}

$$
\begin{aligned}
a=a_{k} & =u_{k}+\varepsilon_{k} \\
& =\ddot{q}_{d, k}+K_{P}\left(q_{d, k}-q_{k}\right)+K_{D}\left(\dot{q}_{d, k}-\dot{q}_{k}\right)+\varepsilon_{k}
\end{aligned}
$$

On-line learning scheme

On-line regressor

- Gaussian Process (GP) regression to estimate the perturbation δ
- from input-output observations that are noisy, with $\omega \sim \mathcal{N}\left(0, \Sigma_{\omega}\right)$, the generated data points at the k-th control step are

$$
X_{k}=\left(q_{k}, \dot{q}_{k}, u_{k}\right) \quad Y_{k}=\ddot{q}_{k}-u_{k}
$$

- assuming the ensemble of n_{d} observations with a joint Gaussian distribution

$$
\binom{Y_{1: n_{d}-1}}{Y_{n_{d}}} \sim \mathcal{N}\left(0,\left(\begin{array}{cc}
K & k \\
k^{T} & \kappa\left(X_{n_{d}}, X_{n_{d}}\right)
\end{array}\right)\right) \quad \text { a kernel } \quad \text { to be chosen }
$$

- the predictive distribution that approximates $\delta(\hat{X})$ for a generic query \hat{X} is
with

$$
\varepsilon(\widehat{X}) \sim \mathcal{N}\left(\mu(\widehat{X}), \sigma^{2}(\hat{X})\right)
$$

$$
\begin{aligned}
\mu(\hat{X}) & =k^{T}(\hat{X})\left(K+\Sigma_{\omega}\right)^{-1} Y \\
\sigma^{2}(\hat{X}) & =k(\hat{X}, \hat{X})-k^{T}(\hat{X})\left(K+\Sigma_{\omega}\right)^{-1} k(\hat{X})
\end{aligned} \quad\left[\Rightarrow \varepsilon_{k}=\varepsilon\left(X_{k}\right)\right.
$$

Simulation results

- Kuka LWR iiwa, 7-dof robot
- model perturbations: dynamic parameters with $\pm 20 \%$ variation, uncompensated joint friction
- 7 separate GPs (one for each joint), each with 21 inputs at every $t=t_{k}$
- sinusoidal trajectories for each joint
norm of the joint errors

... at the first and only iteration!

position components in the Cartesian space

Simulation results

video
(slowed
down)

Extension to underactuated robots

$$
\left(\begin{array}{ll}
M_{a a}(q) & M_{a p}(q) \\
M_{a p}^{T}(q) & M_{p p}(q)
\end{array}\right)\binom{\ddot{q}_{a}}{\ddot{q}_{p}}+\binom{n_{a}(q, \dot{q})}{n_{p}(q, \dot{q})}=\binom{\tau}{0}
$$

- planner optimizes motion of passive joints (at every iteration)
- controller for active joints with partial feedback linearization
- two regressors (on/off-line) for learning the required acceleration corrections for active and passive joints

Experiments on the Pendubot

- Pendubot, 2-dof robot with passive second joint
- swing-up maneuvers from down-down to a new equilibrium state

\Rightarrow up-up
\Rightarrow down-up

Experimental results

convergence in 2 iterations!

