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Inverse dynamics control

given the robot dynamic model with N joints

M(q)g+n(q,q) =u

c(q,q) + g(q) + friction model
and a twice-differentiable desired trajectory for t € [0, T]

qa(t) - q4q(t), Gq(t)
applying the feedforward torque in nominal conditions

ug = M(qq)Gg + n(qq, 4q)

yields exact reproduction of the desired motion, provided
that q(0) = gq4(0),q(0) = q,4(0) (initial matched state)
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In practice ...

a humber of differences from the nominal condition

= initial state is "not matched” to the desired trajectory g, (t)

= disturbances on the actuators, from unexpected collisions,
truncation errors on data, ...

= inaccurate knowledge of robot dynamic parameters m — 7@
(link masses, inertias, center of mass positions)

= unknown value of the carried payload

= presence of unmodeled dynamics (complex friction
phenomena, transmission elasticity, ...)

¥

require the use of feedback information
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Introducing feedback

0., =M i+ (g, ¢ with M, fi estimates of terms
d (qd)qd (qd qd) (or coefficients) in the dynamic model

note: il can be computed off line [e.g., by NE,(q4, 44, d4)]

feedback is introduced to make the control scheme more robust

different possible implementations depending on
amount of computational load share

= OFF LINE ( 4= open loop)
= ON LINE ( 4= closed loop)

two-step control design:
1. compensation (feedforward) or cancellation (feedback) of nonlinearities
2. synthesis of a linear control law stabilizing the trajectory error to zero
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A

A series of trajectory controllers

(assuming the nominal case: M = M,/ = n)

1. inverse dynamics compensation (FFW) + PD local stabilization
= : : of trajectory error
u =g + Kp(qa — @) + Kp(qa — ) |

e(t) = qq(t) — q(¢)
global if additional
2. inverse dynamics compensation (FFW) + variable PD\_ conditions on
N = : : Kp and Kp
u =1 +M(a)|Kr(qa — @) + Kp(qa — q)] |
(3. feedback linearization (FBL) + [PD+FFW] = “COMPUTED TORQUE”
u = M(QlGa + Kp(qa — @) + Kp(da — D1 +7(q,§) |
4. feedback linearization (FBL) + [PID+FFW]

u = M(q) éid+KP(qd_Q)+KD(Qd_Q)+KIJ(Qd_Q)dt + 1(q,q)

\

global stabilization for any Kp > 0, Kp > 0 (and not too large K; > 0)
more robust to small uncertainties/disturbances, even if more complex to implement in real time
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da + Kpqa + ~ AT "]+ ~U 4+ 14 q q
+ Kpqy ’Q | M(q) '+< >_’<_ iM (q) > f ’f >
n(q,q)
symmetric and
positive definite A(q,d)
matrices Kp, Kp 4,4
Kp |
in nominal
conditions |:>‘ M(q)d + n(q, CI) = U= M(q)a + n(q, CI) I‘ C[ — al
(M =M,# =n) > linear and

nonlinear robot dynamlcs nonllnear control Iaw decoupled

global asymptotic ” . . system
stabilization of | @ = Ga + Kp(ga — ¢) + Kp(qa — q ) I
tracking error
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Interpretation in the linear domain

éid"‘?n%"‘?ﬂld—w_ ) k. — f a >f 1

> 0, diagonal

KD‘

Kp |+

under feedback linearization control, the robot has a dynamic behavior that is
invariant, linear and decoupled in its whole state space (V(q, Q))\

. NPTy . .
linearity a unitary mass (m = 1) in the joint space !

error transients e; = q4; — q; — 0 exponentially, prescribed by K;;, K,,; choice |

decoupling
each joint coordinate g; evolves independently from the others, forced by q; ‘

é + KDe + er —_ O — el +KDiéi + Kpiei —_ O
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Addition of an integral term: PID

whiteboard...

da + Kpqa + Kpqq
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€i = qd4i — 9 (l == 1,..,N) = éi+KDiéi+KPiei+KlifeidT= 0

red
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*
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Ad
*
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\d

=
(1) (2)
1
Lle;(t)] (=>3) (52 + Kp;s + Kp; + Klig) ei(s) =0 3 1 Kpi ex;ng)tim
2 Kpi K stability
sX = (s3+ Kp;s? + Kpis + K;))e;j(s) =0 =5> 1 [(KpiKp; — K1)/ Kp; conditions by
(4) ) ¢ Ky, Routh criterion
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Remarks

= desired joint trajectory can be generated from Cartesian data
i p.d (t)) pd (O), Pa (O)
le(o) CIdl(O) q4(0) = f~(pa(0))

3} qa(t) Ga(0) = J7(q4(0))p4(0)

Ga(t) — f f — da(t) Ga(t) = ]_1(Qd)[ﬁd(t) —j(Qd)C?d]

= real-time computation by Newton-Euler algo: up5, = NE (g, q, a)

= Simulation of feedback linearization control
true parameters

da (t), Qd (t), ]
e > {q
Ga(t) feedback . robot |
linearization > q
estimated parameters # I ¥

Hint: there is no use in simulating this control law in the ideal case (ft = m); robot behavior
will be identical to the linear and decoupled case of stabilized double integrators!!
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Further comments

= choice of the diagonal elements of K,, K, (and K,)
= shaping the error transients, with an eye also to motor saturations...

e(t) = qq(t) —q(t)

critically damped transient

t
= parametric identification
= to be done in advance, using the property of linearity in the dynamic
coefficients of the robot dynamic model

= choice of the sampling time of a digital implementation
= compromise between computational time and tracking accuracy,
typically T, = 0.5 =+ 10 ms
= exact linearization by (state) feedback is a general technique

of nonlinear control theory
= can be used for robots with elastic joints, wheeled mobile robots, ...

= non-robotics applications: satellites, induction motors, helicopters, ...
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Another example of feedback linearization design §

= dynamic model of robots with elastic joints

= g = link position } 2N generalized
= 6 = motor position (after reduction gears) coordinates (q, 0)
= B,, = diagonal matrix (> 0) of inertia of the (balanced) motors
= K = diagonal matrix (> 0) of (finite) stiffness of the joints

Y e {M(q)q' +e(@d)+9(@+K@-6)=0 (1)
x=1(q,0,4,0) Bn0+KOB—-q)=u (2

= IS there a control law that achieves exact linearization via feedback?
u=a(q,6,4,0)+ B(q.0,¢q,0)a

d4q. linear and decoupled system:
YES|and it yie|ds g a;, i=1,.. N N chains of 4 integrators
4 l (to be stabilized by linear
t

control design)

Hint: differentiate (1) w.rt. time until motor acceleration 6 appears;
substitute this from (2),; choose u so as to cancel all nonlinearities ...
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Alternative global trajectory controller

u=M(q)jgg +5(q, q)qq + 9(q) + F,qq + Kpe + Kpé

SPECIAL factorization such that symmetric and
M — 2§ is skew-symmetric positive definite matrices

global asymptotic stability of (e, &) = (0,0) (trajectory tracking)
proven by Lyapunov +Barbalat (time-varying system) +LaSalle

does not produce a complete cancellation of nonlinearities

» the variables g and g that appear linearly in the model are evaluated
on the desired trajectory

does not induce a linear and decoupled behavior of the
trajectory error e(t) = q,4(t) — q(t) in the closed-loop system

however, it lends itself more easily to an adaptive version
: by 4x standard or 1x modified NE algorithm
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Analysis of asymptotic stability

of the trajectory error - 1

M(q)d + S(q,q9)q + g(q) + F,q = u robot dynamics (including friction)
control law u = M(q)Gs + S(q,q)q4 + g(q) + F,q4 + Kpe + Kpé
= Lyapunov candidate and its time derivative (with e = g4 — q)

1 .T . 1 T ¥ 1 .T ¢ . .T oo T .
V==¢"'M(q)ée+=e"Kpe=>0 = V==e"M(qg)ée+é M(q)é+e"Kpé
2 2 2 —
= the closed-loop system equations yield
M(q)é = —=S(q,9)é — (Kp + Fy)é — Kpe
= substituting and using the skew-symmetric property of M — 25
V=-eT(Kp+F,)ée<0 V=0 @ é=0
= since the system is time-varying (due to g,(t)), direct application
of LaSalle theorem is NOT allowed = use Barbalat lemma... S":C’jf‘zgc;n

q=q4(t)—e,g=q4(t)—¢é = V=V(eet)=V(x,t) Dblocks
]
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Analysis of asymptotic stability

of the trajectory error - 2

= since i) V is lower bounded and ii) V < 0, we have to check only
condition iii) in order to apply Barbalat lemma

V=—26T(K, + Fy)é .. is this bounded?

= from i) + ii), V is bounded = e and é are bounded }

g is
bounded

= assume that the desired trajectory has bounded velocity g4

= Using the following two properties of dynamic model terms
0<am<IIM (DI <auy <o ISPl < asllgll

then also e will be bounded (in norm) since -
é=—-M"1(q)[S(q,q)é + Kpe + (Kp + Fy)é]

I T 1 I Islimve =0

bounded bounded bounded bounded t—oo

in norm by «
M bounded

in norm by as||g|| <— bounded
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Analysis of asymptotic stability

of the trajectory error — end of proof

= we can conclude by proceeding as in LaSalle theorem

V=0 & e=0
= the closed-loop dynamics in this situation is

M(q)é = —Kpe

= ¢=0 © e=0 = (e¢)=(0,0)
is the largest
invariant setin IV =0

- (global) asymptotic tracking
will be achieved 4
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Reqgulation as a special case

= what happens to the control laws designed for trajectory
tracking when g, is constant? are there simplifications?

s feedback linearization
u=M(q)[Kp(qq — q) — Kpql +c(q,9) + g(q)

= No special simplifications

= however, this is a solution to the regulation problem with
exponential stability (and decoupled transients at each joint!)

= alternative global controller
u=Kp(qa —q) —Kpg +9(q)

= Wwe recover the simpler PD + gravity cancellation control law!!
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Trajectory execution without a model

= is it possible to accurately reproduce a desired smooth joint-
space reference trajectory with reduced or no information on
the robot dynamic model?

= this is feasible (and possibly simple) in case of repetitive motion
tasks over a finite interval of time

= trials are performed iteratively, storing the trajectory error
information of the current execution [k-th iteration] and
processing it off line before the next trial [(k + 1)-iteration] starts

= the robot should be reinitialized in the same initial state at the
beginning of each trial (typically, with g = 0)

= the control law is made of a non-model based part (often, a
decentralized PD law) + a time-varying feedforward which is
updated before every trial

= this scheme is called iterative trajectory learning
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Scheme of iterative trajectory learning

= control design can be illustrated on a SISO linear system
in the Laplace domain

Viet (1)
Learning - Memory (k+1)
Algorithm

Memory (k) “plug-in” signal:
v1(t) =0 at

u'(t)

Ya) + _ e(t) yoy first (k = 1) iteration
Controller = Plant >
C(s) u(t) P(s)
W(s) =2 (s) _ P(s)C(s) closed-loop system without learning
" y4(s) 1+ P(s)C(s) (C(s)is, e.g., a PD control law)

Uk (s) = up(s) + vi(s) = C(s)ex(s) + vi(s) control law at iteration k
P(s)
14+ P(s)C(s)
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Background math on feedback loops

whiteboard...

= algebraic manipulations on block diagram signals in the Laplace domain:
x(s) = LIx(®)], x ={yg vy, u',v,e} = {yq, Vi, Ur, vy, e}, With transfer functions

earmng. o remory oot y(s) = P(s)uls) = P(s)(v(s) + w'(s))

Algorithm Memory (k) = P(s)v(s) + P(s)C(s)e(s)
= P(s)v(s) + P(s)C(s)(a(s) —y(s))

= (14 P(s)C(s))y(s) =
= P(s)v(s) + P(s)C(s)yq(s)

yol) +__e(t)

y(t)
-

C(s)

ol P(s)

P(s)C(s) P(s)
= y() =17 PGICE) ya(s) +17 P(5)C(S) v(s) = W(s)yals) + W, (s)v(s)

» feedback control law at iteration k&

up, (s) = C(8)(ya(s) — yr(s)) = C()ya(s) — P(s)C(s)(vi (s) + up(s))

C P(s)C
e 4D ~ T ey s V() = We5)3a() — W (i)

= u(s) =

= error at iteration k
ex(s) = ya(s) —yr(s) = y4(s) — (W(S)}’d(s) + Wv(S)Uk(S)) = (1 - W(S))Yd(s) — W, (s)v(s)

Robotics 2 We(s) =1/(1+ P(s)C(s)) 19



Learning update law

= the update of the feedforward term is designed as

/ with @ and [ suitable filters
Vik+1(8) = a(s)ug(s) + B(s)vk(s) (also non-causg, of the FIR type)

recursive expression o a(s)C(s)
of feedforward term Vk1(8) = 1+ P(s)C(s) Va(s) + (B(s) = als)W(s)vi(s)

recursive expression 1-p(s)

of eror & = v —y 1) = T i Ya () + (BE) —aW($)er(s)

s if @ contraction condition can be enforced
|B(s) —a(s)W(s)| < 1| (forall s = jw frequencies such that ...)

then convergence is obtained for k — o

~ Ya(s) a(s)W(s) e (5) = Va(s) 1—p(s)
S P(S)1=BG) FasW(s) 7 14+ P(s)C(s)1—B(s) + a(s)W(s)

Voo (S)
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Proof of recursive updates

whiteboard...

= recursive expression for the feedworward v,
Vit1(8) = a($)ug(s) + B(SIvi(s) = a(s)C(s)ek(s) + B(s)vi(s)
= a(s)C(s)[We(s)ya(s) — Wy (s)vi(s)] + B (s)vi(s)

a(s)C(s)
=T P(5)C() va(s) + (B(s) — a(s)W(s)) vi(s)

= recursive expression for the error ey,
ex(s) = va(s) = yi(s) = ya(s) = P(s)(vr(s) + up(s))

> D(s) = % (4(5) ~e4(52) = 149) =y

Pies(5) = PO)(vias(5) + 11 (9)) = PO(ENGE) + BOILS) + s ()
= P(5) (a(6)C(5)en(s) + B5) s (7a() = €u(5)) = BEIC(S)en(s) + C(5Dera(s))
er+1(S) = ¥a(s) = Yi+1(s)
= (1= BN ya(®) = [(@) = BOIPEICE) = B$)]en(s) = PEIC(E)ernn )

1-B(s)
1+ P(s)C(s)

= epp(s) =
Robotics 2
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Proof of convergence

whiteboard...

from recursive expressions

C
s (8) = T ya(s) + (B(S) — (I (5)) ve()
1 —
s (5) = T T <y () + (B(5) — a(&W(S)) (s)

1+ P(s)C(s)
compute variations from k to k + 1 (repetitive term in trajectory y,; vanishes!)
Av41(8) = vg41(s) — v (s) = (B(s) — a()W(s)) Avk(s)
Aery1(s) = exi1(s) — ex(s) = (B(s) — a(s)W(s)) Aey(s)

by contraction mapping condition |B(s) — a(s)W(s)| <1 = {vi} = Ve, {er} = e
C
1 1(1225)(225) ya(s) + (B(s) — a(s)W(s)) veo(s)
1 —
e+ (16~ W) ()
Ya(s) a(s)W(s) Ya(s) 1-pB(s)

P(s) 1—=PB(s) + a(s)W(s) €oo(s) = 1+ P(s)C(s)1—PB(s) + als)W(s)
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Comments on convergence

= if the choice [/ = 1 allows to satisfy the contraction condition, then
convergence to zero tracking error is obtained

€x(s) =0
and the inverse dynamics command has been learned
Va(s)
P(s)

= in particular, for a(s) = 1/W (s) convergence would be in 1 iteration only!

Voo (S) =

= the use of filter f(s) # 1 allows to obtain convergence (but with residual
tracking error) even in presence of unmodeled high-frequency dynamics

= the two filters can be designed from very poor 4
information on system dynamics, using classic

tools (e.g., Nyquist plots) ’ <)
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Application to robots

= for N-dof robots modeled as
[Br + M(q)]G + [Fy +5(q, 9]q + 9(q) = u
we choose as (initial = pre-learning) control law
u=u =Kp(qq —q) +Kp(4g — @) + §(q)

and design the learning filters (at each joint) using
the linear approximation

q;(s) _ Kpis + Kp;
qai(s) Bpis?+ (F'Vi + KDi)S + Kp;
= initialization of feedforward uses the best estimates
Vg = [Bm + M(Qd)]qd + [FV + S(qq, C?d)]éld + 9(qq)
or simply v; = 0 (in the worst case) at first trial kK = 1

i=1,,N
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Experimental set-up
= joints 2 and 3 of 6R MIMO CRF robot prototype @DIS

. e [0 —
~ 90% gravity —~ '
balanced > 0/ S,_/_/_d AN |
through springs / e \\ AN J
h | |
igh level of % (. ]
dry friction \ / |

\ /I

Harmonic Drives

I
transmissions i _ _ N ]
'desired velocity/position for both joints

with ratio 160:1 .
) oia |- "o :. DC motors with
DSP T, = 400us s
¢ - _]gl_ Digital %] s | |8 Ll f\ current amplifiers
D/A = 12 bit X'TBZ’MSG o o 32025 § Q.
R/D = 16 bit/2m ‘FI_ P ) [Teons” : i o 1, resolvers and
A/D = 11 bit/(rad/s) S Vv Sensors Posiion tachometers
A/ dl pee
<4— — i - b‘ e »
Supervision and Learning  Digital Controller Interface to the Robot Robot Arm
Robotics 2 De Luca, Paesano, Ulivi: IEEE Trans Ind Elect, 1992 o5



Experimental results

=« tracking error e, reduces for k = 1,3,6,12

2

feedforward vy, increases for k ='3,6,12 (zeroatk’=1) = ° °

joint 2
¢ quiof

1 12

10} ﬂMﬁ - 5L

—7 ) =] Y

-5

~-10

10 T —

' . . . . :
51 4
Y i

~5h .
0 1 2 s 4 5 6 7 8 o 0 . . . . . .
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On-line learning control

= re-visitation of the learning idea so as to acquire the missing
dynamic information in model-based trajectory control

= on-line learning approach

= the robot improves tracking performance already while executing the task
in feedback mode

= uses only position measurements from encoders
= NO need of joint torque sensors

= machine learning techniques used for
= data collection and organization
= regressor construction for estimating model perturbations
= fast convergence
= starting with a reasonably good robot model
= extensions to underactuated robots or with flexible components
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Control with approximate FBL

= dynamic model, its nominal part and (unstructured) uncertainty
M(@gG+n(g,g9)=7 M=M+AM n=A+An
= model-based (approximate) feedback linearization
Trp, = M(q)a + (g, ¢)
= resulting closed-loop dynamics with perturbation
g=a+06(q,q,a) «<— s§=MM—-I)a+MI(A—n)

= control law for tracking g, (t) is completed by using (at ¢t = t;) a
linear design (PD with feedforward) and a learning regressor ¢,

a=ay=UuUy+é&g
=qax + Kp(Qax — qx) + Kp(Qax — qx) + €k
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Ak C.Ik

A 4

t u a == =
9a(® ( inear Control | ¥ k Feedback ‘FELK S :
for Tracking Linearization s =

-

[Gaussmn Process

Regression
! Xk:Yk
4 ) .
U} | Data Set Collection|_ {9k Grc}
. Procedure )
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On-line regressor

= Gaussian Process (GP) regression to estimate the perturbation 6

= from input-output observations that are noisy, with w ~ N (0,2 ), the
generated data points at the k-th control step are

X = (qk, 9, Uk ) Yie = qx — Ui
= assuming the ensemble of n,; observations with a joint Gaussian distribution
- aKernel

L
(Yl:nd—l) ~nlo ( KT k ) to be chosen
Ynd , k K(Xnd»Xnd)

= the predictive distribution that approximates §(X) for a generic query X is
e(X) ~ N (u(X), 0%(X))

u(R) = kT(X)(K + £,)"1Y - = g = e(X)
o2(X) = k(X,8) — kT(R)(K + £,)"k(X)

Robotics 2 30
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Simulation results

= Kuka LWR iiwa, 7-dof robot

= model perturbations: dynamic parameters with + 20% variation,
uncompensated joint friction

= 7 separate GPs (one for each joint), each with 21 inputs at every t = ¢,
= sinusoidal trajectories for each joint

X Y
0.09
0.08 \
// \\ 0.07 / \\\
- / \ /
norm of the joint errors To \ / T ool 17\
- / ~ \ ( \
GP error S o \ / g | \l'\ /I \
14 nominal error 2 \ J 2 \ / \
x g \ ‘ g 0.03 \ \\ /
. 5 \ / Eo \ / \ /
D 10| O 02 \ GP o \ / \\, J GP
% \-. /’ :\omlnal 0 | nominal
-~ N\ _ rue true
o 8 v mc 1 2 ;’ 4 5 P 7 Dmc 1 2 3 4 5 [ 7
5 Time(s) Time(s)
- B y Z
£ ap = 126
S .| A position ~ ~
A ~A VA A NN components / \
S RVAN Y WAVAVALANATANAEIAZRY in the g |/ |\ \
T S e R Cartesian U
7 = /
Time(s) Space é . / \ / \
- - = § 1 “ / Il
at the first and only iteration! : \ /
= t \ f \ /
o' \\ / GP §
2 nominal ’
true
Robotics 2 Tmeter 31
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Simulation results

Robotics 2

video
(slowed
down)

An Online Learning Procedure for Feedback Linearization Control

without Torque Measurements

M. Capotondi, G. Turrisi, C. Gaz, V. Modugno, G. Oriolo, A. De Luca

Robotics Lab, DIAG
Sapienza Universita di Roma

October 2019

Proc. of Machine Learning Research, vol. 100 (2020)
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Extension to underactuated robots

Maa(‘]) Map(CI) éia na(‘lr CI) . T
(Mgp (@) M,, (q)> (éip) * (np(q, q)) B (o)
= planner optimizes motion of passive joints (at every iteration)

= controller for active joints with partial feedback linearization

= two regressors (on/off-line) for learning the required acceleration
corrections for active and passive joints

. learning
|

I 4 .
assive
: { Epk } P
R e L L L feasnaeduateoniavesnerse subsystem
5 : _regression

______________________________________________________________________________________

1 planner: : I'* controller l '
1 N | ) 4 % ]
[ ' 1 : Eak active X
| ] ' : : subsystem '
] ' 11 ' 1
' 1 A '

' ' : ___regression !
1

1 | )

T, at) s G |
L T optimization | OV i stable partial feedback | 7 PFL .k underactuated] qi.-95..9; |,
R problem o tracking linearization robot | :
Vo o 0 !
! warm start o '
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Experiments on the Pendubot

= Pendubot, 2-dof robot with passive second joint
= swing-up maneuvers from down-down to a new equilibrium state

chaks

ﬁ ﬁ ﬁ => down-up
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Experimental results

IEEE Robotics and Automation Letters, vol. 7(1), 2022

Iterative Learning Control for Underactuated Robots

Giulio Turrisi, Marco Capotondi, Claudio Gaz,
Valerio Modugno, Giuseppe Oriolo, Alessandro De Luca

Robotics Lab, DIAG,
Sapienza Universita di Roma

March 2021

latest video with more simulations & experiments

convergence in 2 iterations! on YouTube https://youtu.be/1aKG__8gfvk
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