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Dynamic model of robots:
Newton-Euler approach



Approaches to dynamic modeling 
(reprise)

energy-based approach
(Euler-Lagrange)

n multi-body robot seen as a whole

n constraint (internal) reaction forces 
between the links are automatically 
eliminated: in fact, they do not 
perform work

n closed-form (symbolic) equations 
are directly obtained

n best suited for study of dynamic 
properties and analysis of control 
schemes

Newton-Euler method
 (balance of forces/moments)

n dynamic equations written 
separately for each link/body

n mainly used for inverse dynamics 
in real time
n equations are evaluated in a 

numeric and recursive way
n best for synthesis 

(=implementation) of model-
based control schemes

n by eliminating the internal reaction forces 
and performing back-substitution of all 
expressions, we get dynamic equations in 
closed-form (identical to Euler-Lagrange!)
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Derivative of a vector in a moving frame
… from velocity to acceleration

!�̇�" = 𝑆 0𝜔" 0𝑅"

!𝜔!

derivative of a “unit” vector
in a moving frame

𝑖𝑒!

𝑑 𝑖𝑒!
𝑑𝑡 = 𝑖𝜔! × 𝑖𝑒!
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!𝑣" = 0𝑅" 𝑖𝑣"
!�̇�" = 0𝑎" = 0𝑅" 𝑖𝑎" = 0𝑅" "�̇�" + 0�̇�" 𝑖𝑣"

= 0𝑅" "�̇�" + 0𝜔" × 0𝑅" 𝑖𝑣" = 0𝑅" #�̇�# + #𝜔# × 𝑖𝑣"

"𝑎" = "�̇�" + "𝜔" × 𝑖𝑣"



Dynamics of a rigid body
n Newton dynamic equation

n balance: sum of forces = variation of linear momentum

n Euler dynamic equation
n balance: sum of moments = variation of angular momentum

n principle of action and reaction
n forces/moments: applied by body 𝑖 to body 𝑖 + 1 
                    = − applied by body 𝑖 + 1 to body 𝑖

!𝑓! =
𝑑
𝑑𝑡 𝑚𝑣" = 𝑚�̇�"

!𝜇! =
𝑑
𝑑𝑡 𝐼𝜔

= 𝐼�̇� + 𝑆 𝜔 𝑅 ̅𝐼𝑅#𝜔 +𝑅 ̅𝐼𝑅#𝑆# 𝜔 𝜔
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= 𝐼�̇� + 𝜔 × 𝐼𝜔

= 𝐼�̇� +
𝑑
𝑑𝑡 𝑅 ̅𝐼𝑅$ 𝜔 = 𝐼�̇� + �̇� ̅𝐼𝑅$ + 𝑅 ̅𝐼�̇�$ 𝜔



Newton-Euler equations - 1
link 𝑖

axis 𝑖
(𝑞!)

𝒗𝒄𝒊

axis 𝑖 + 1
 (𝑞!$%)

. .
𝑓!$%

𝑧"

𝑚!𝑔

𝑓! force applied
from link 𝑖 − 1 on link 𝑖

𝑓!$% force applied
from link 𝑖	on link 𝑖 + 1

Newton equation

𝑚!𝑔 gravity force 

all vectors expressed in the
same RF (better in RF𝑖 …)

FORCES

N

𝑧"#$

linear acceleration of 𝐶!

center
of mass
𝑪𝒊

𝑓!
𝑂!𝑂!&%

𝑓# − 𝑓#&' +𝑚#𝑔 = 𝑚#𝑎(#
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Newton-Euler equations - 2
link 𝑖

. .
𝑟!&%,(!

𝜏! moment applied
from link (𝑖 − 1) on link 𝑖
𝜏!$% moment applied
from link 𝑖	on link (𝑖 + 1)

Euler equation

MOMENTS

𝑓! × 𝑟!&%,"! moment due to 𝑓! w.r.t. 𝐶! 

−𝑓!$%× 𝑟!,(! moment due to −𝑓!$% w.r.t. 𝐶! 

E

all vectors expressed in
the same RF (… RF𝑖 !!)gravity force gives

no moment at 𝐶!

axis 𝑖
(𝑞!)

axis 𝑖 + 1
 (𝑞!$%)

𝑓!$%

𝑧"𝑧"#$

𝑓! 𝑂!𝑂!&%

𝜏!$%𝜏!

𝜔!

𝑟!,(!

𝑪𝒊

𝜏# − 𝜏#&' + 𝑓# × 𝑟#)',(# −𝑓#&' × 𝑟#,(#= 𝐼#�̇�# +𝜔#× 𝐼#𝜔#
angular acceleration of body 𝑖
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Forward recursion
 Computing velocities and accelerations 

§ “moving frames” algorithm (as for velocities in Lagrange)
§ for simplicity, only revolute joints here
   (see textbook for the more general treatment)

initializations

Robotics 2                                    7

the gravity force term can be skipped in Newton equation, if added here 

AR

!𝜔! = !&%𝑅!# !&%𝜔!&% + �̇�! !&%𝑧!&%
!�̇�! = !&%𝑅!# !&%�̇�!&% + �̈�! !&%𝑧!&% + !&%�̇�!# !&%𝜔!&% + �̇�! !&%𝑧!&%

= !&%𝑅!#
!&%�̇�!&% + �̈�! !&%𝑧!&% + �̇�! !&%𝜔!&%×!&%𝑧!&%

!𝑎! = !&%𝑅!#!&%𝑎!&% + !�̇�! × !𝑟!&%,! + !𝜔! × !𝜔! × !𝑟!&%,!
!𝑎"! = !𝑎! + !�̇�! × !𝑟!,"! + !𝜔! × !𝜔! × !𝑟!,"!

(𝜔(

(�̇�(
(𝑎( − 0𝑔



𝑢! = ;
!𝑓!# !𝑧!&% +𝐹)!�̇�!
!𝜏!# !𝑧!&% +𝐹)!�̇�!

Backward recursion
 Computing forces and moments

at each recursion step, the two vector equations (𝑁𝑖 + 𝐸𝑖) at joint 𝑖 provide 
a wrench (𝑓!, 𝜏!) ∈ ℝ*): this contains ALSO reaction forces/moments at 
the joint axis ⇒ to be “projected” along/around this axis to produce work

from 𝑁! to 𝑁!&%

from 𝐸! to 𝐸!&%

F/MR

generalized forces
(in rhs of Euler-Lagrange eqs)

for prismatic joint
for revolute joint

𝑁 scalar
equationsFP
at the end

initializations
𝑓)$% 𝜏)$%
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!𝑓! = !𝑅!$%!$%𝑓!$% +𝑚!
!𝑎"! − !𝑔

eliminated, if inserted
in forward recursion (𝑖=0)

!𝜏! = !𝑅!$%!$%𝜏!$% + !𝑅!$%!$%𝑓!$% × !𝑟!,"! − !𝑓! × !𝑟!&%,! + !𝑟!,"!
+ !𝐼! !�̇�! + !𝜔! × !𝐼! !𝜔!

add any dissipative term
(here, viscous friction only)



Comments on Newton-Euler method
n the previous forward/backward recursive formulas can 

be evaluated in symbolic or numeric form
n symbolic

n substituting expressions in a recursive way
n at the end, a closed-form dynamic model is obtained, which 

is identical to the one obtained using Euler-Lagrange (or any 
other) method

n there is no special convenience in using N-E in this way …
n numeric

n substituting numeric values (numbers!) at each step
n computational complexity of each step remains constant ⇒ 

grows in a linear fashion with the number 𝑁 of joints (𝑂(𝑁))
n strongly recommended for real-time use, especially when the 

number 𝑁 of joints is large
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Newton-Euler algorithm
efficient computational scheme for inverse dynamics

AR

AR

F/MR

F/MR

FP

FP

inputs outputs

(force/moment exchange
from EE to environment)

(at robot base) numeric steps
at every instant 𝑡
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𝑢%

𝑢)

𝑞%
�̇�%
�̈�%

$𝑓$, $𝜏$

%𝑓%, %𝜏%

&𝑓&,
&𝜏&

&'$𝑓&'$,
&'$𝜏&'$

𝑞)
�̇�)
�̈�)

(𝜔(,
(�̇�(,

(𝑎( −
(𝑔

$𝜔$, $�̇�$, $𝑎$, $𝑎)$

&𝜔&, &�̇�&, &𝑎&, &𝑎)&

&#$𝜔&#$, &#$�̇�&#$, &#$𝑎&#$, &#$𝑎),&#$



n data file (of a specific robot)
n number 𝑁 and types σ = 0,1 + of joints (revolute/prismatic)
n table of DH kinematic parameters
n list of ALL dynamic parameters of the links (and of the motors)

n input
n vector parameter 𝛼 = 0𝑔, 0  (presence or absence of gravity)
n three ordered vector arguments

n typically, samples of joint position, velocity, acceleration 
taken from a desired trajectory

n output
n generalized force 𝑢 for the complete inverse dynamics
n … or single terms of the dynamic model

general routine𝑁𝐸#(arg1, arg2, arg3)

Matlab (or C) script
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assuming no interaction
with the environment

(𝑓&'$= 𝜏&'$= 0)



Examples of output

n complete inverse dynamics

n gravity term

n centrifugal and Coriolis term

n 𝑖-th column of the inertia matrix

n generalized momentum 

𝑒! = 𝑖-th column
of identity matrix

𝑢 = 𝑁𝐸 "5(𝑞, 0, 0) = 𝑔(𝑞)

𝑢 = 𝑁𝐸6(𝑞, 0, 𝑒#) = 𝑀#(𝑞)

𝑢 = 𝑁𝐸6 𝑞, 0, �̇� = 𝑀 𝑞 �̇� = 𝑝

𝑢 = 𝑁𝐸6(𝑞, �̇�, 0) = 𝑐(𝑞, �̇�)

𝑢 = 𝑁𝐸 "5(𝑞𝑑, �̇�7, �̈�7) = 𝑀(𝑞7)�̈�7 + 𝑐(𝑞7, �̇�7) + 𝑔(𝑞7) = 𝑢7
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A further example of output
n factorization of centrifugal and Coriolis term

n for later use, what about a “mixed” velocity term?
𝑢 = 𝑁𝐸6 𝑞, �̇�, 0 = 𝑐 𝑞, �̇� = 𝑆(𝑞, �̇�)�̇�

𝑆(𝑞, �̇�)�̇�8
𝑢 = 𝑁𝐸6(𝑞, �̇�8, 0) = 𝑆(𝑞, �̇�8)�̇�8
𝑢 = 𝑁𝐸6(𝑞, 𝑒#�̇�8# , 0) = 𝑆#(𝑞, 𝑒#�̇�8#)�̇�8#

⇎

𝑆 𝑞, �̇� �̇�8 = 𝑆 𝑞, �̇�8 �̇� , when using Christoffel symbolsa)

𝑢 =
1
2 𝑁𝐸6 𝑞, �̇� + �̇�8, 0 − 𝑁𝐸6 𝑞, �̇�, 0 − 𝑁𝐸6(𝑞, �̇�8, 0)

= 𝑆 𝑞, �̇� �̇�8

⇒

𝑆 𝑞, �̇� + �̇�8 �̇� + �̇�8 = 𝑆 𝑞, �̇� �̇� + 𝑆 𝑞, �̇�8 �̇�8 + 2𝑆 𝑞, �̇� �̇�8b)

(i.e., with 3 calls of standard NE algorithm)

no good!

[Kawasaki et al., IEEE T-RA 1996]
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Modified NE algorithm
modified routine 2𝑁𝐸#(arg1, arg2, arg3, arg4) with 4 arguments

E𝑁𝐸: 𝑥, 𝑦, 𝑦, 𝑧 = 𝑁𝐸:(𝑥, 𝑦, 𝑧)

𝑢 = E𝑁𝐸 "5 𝑞, 0, 0, 0 = 𝑁𝐸 "5 𝑞, 0, 0 = 𝑔(𝑞)

𝑢 = E𝑁𝐸6 𝑞, �̇�, �̇�, 0 = 𝑁𝐸6 𝑞, �̇�, 0 = 𝑐 𝑞, �̇� = 𝑆(𝑞, �̇�)�̇�

(i.e., with 1 call of modified NE algorithm)

𝑢 = E𝑁𝐸6 𝑞, �̇�, 𝑒# , 0 = 𝑆#(𝑞, �̇�)⇒

𝑢 = E𝑁𝐸6 𝑞, �̇�, �̇�8, 0 = 𝑆(𝑞, �̇�)�̇�8⇒ with �̇� − 2𝑆 skew-symmetric

(i.e., the full matrix 𝑆 satisfying the skew-symmetry of
       �̇� − 2𝑆 with 𝑁 calls of the modified NE algorithm)

[De Luca, Ferrajoli, ICRA 2009]

e.g.,

consistency property
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Inverse dynamics of a 2R planar robot

desired (smooth) joint motion:
quintic polynomials for 𝑞%, 𝑞,	with
zero vel/acc boundary conditions

from (90o, -180o) to (0o, 90o) in 𝑇 = 1 s

⇔
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Inverse dynamics of a 2R planar robot

motion in vertical plane (under gravity)
both links are thin rods of uniform mass 𝑚% = 10 kg, 𝑚* = 5 kg

zero
initial torques = 
free equilibrium
configuration

+
zero initial

accelerations

final torques 
𝑢% ≠ 0, 𝑢* = 0

balance 
link weights

in final (0o, 90o)
configuration
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Inverse dynamics of a 2R planar robot

torque contributions at the two joints for the desired motion
                               = total,           = inertial
           = Coriolis/centrifugal,           = gravitational
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Use of NE routine for simulation
direct dynamics

n numerical integration, at current state (𝑞, �̇�), of

n Coriolis, centrifugal, and gravity terms

n 𝑖-th column of the inertia matrix, for 𝑖	 = 1, . . , 𝑁

n numerical inversion of inertia matrix

n given 𝑢, integrate acceleration computed as 

𝑀# = 𝑁𝐸6(𝑞, 0, 𝑒#)

𝐼𝑛𝑣𝑀 = inv(𝑀)

�̈� = 𝑀)'(𝑞)[𝑢	– (𝑐(𝑞, �̇�) + 𝑔(𝑞))] = 𝑀)'(𝑞)[𝑢	– 	𝑛(𝑞, �̇�)]

complexity 𝑂(𝑁)

𝑂(𝑁,)

𝑂(𝑁-)
but with small coefficient

𝑛 = 𝑁𝐸 "5(𝑞, �̇�, 0)

�̈� = 𝐼𝑛𝑣𝑀 ∗ [𝑢	– 𝑛] new state (𝑞, �̇�)
and repeat over time ...
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