Robotics 2

Dynamic model of robots:
Newton-Euler approach

Prof. Alessandro De Luca

DIPARTIMENTO DI INGEGNERIA INFORMATICA
AUTOMATICA E GESTIONALE ANTONIO RUBERTI

SAPIENZA

QWS/ UNIVERSITA DI ROMA

Approaches to dynamic modeling

(reprise)
energy-based approach Newton-Euler method
(Euler-Lagrange) —— (balance of forces/moments)

= multi-body robot seen as a whole = dynamic equations written

separately for each link/bod
= constraint (internal) reaction forces P Y /body

between the links are automatically = mainly used for inverse dynamics

eliminated: in fact, they do not in real time

perform work = equations are evaluated in a
= closed-form (symbolic) equations numeric and recursive way

are directly obtained = best for synthesis

(=implementation) of model-

. ited f f |
best suited for study of dynamic based control schemes

properties and analysis of control

schemes m by eliminating the internal reaction forces
and performing back-substitution of all
expressions, we get dynamic equations in
closed-form (identical to Euler-Lagrange!)

Robotics 2 2

Derivative of a vector in @ moving frame §

... from velocity to acceleration

v; = OR; iy °R; = S(Ow;) °R;

f

|
(a»)
@t.m
<
|
(a»)
£
X
(a»)
=
<
|l
(a»)
=~
N
<
|
g
X
<
N

derivative of a “unit” vector
in @ moving frame

Robotics 2

Dynamics of a rigid body

= Newton dynamic equation
= balance: sum of forces = variation of linear momentum

Zf-=i(mv)—m1'y
l dt c/) — Cc

= Euler dynamic equation
= balance: sum of moments = variation of angular momentum

d d _ _
. = — = X — r = X . T T
E w=—(Uw) = 1o +—(RIR") w = I& + (RIR" + RIR") w
=Ia')+S(a))RI_RTa)+RI_RTST(y36 =lw+ wXIlw

= principle of action and reaction
» forces/moments: applied by body i to body i + 1
= — applied by body i + 1 to body i

Robotics 2 4

Newton-Euler equations - 1

link i

FORCES

center / f; force applied

\ of mass from link i — 1 on link i

f;+1 force applied

fromlink ion link i + 1

o fia m; g gravity force

axis i \ aX|s i+ 1

(q) 5 (Gian) all vectors expressed in the

same RF (better in RF; ...)

Newton equation fi — fi+1 +m;g = m;a; .
4
|

linear acceleration of C;

Robotics 2

link i
MOMENTS

T; moment applied

from link (i — 1) on link i - Titq
l
T;1+1 moment applied
from link i on link (i + 1) f-/ - 0, - £
' R .
fi X 1i—1 ¢ moment due to f; axis i\ Jaxis i +1

() ! (Gi4a)

all vectors expressed in
the same RF (... RF; !

—fir1 X 17 ; moment due to —f;,

Euler equation

Ty — Tiv1 + fi X Ti21ci —figr X Tici= Iiéi)i + wX(Lw;)| [E

angular acceleration of body i
Robotics 2 6

Forward recursion
Computing velocities and accelerations

= "moving frames” algorithm (as for velocities in Lagrange)

= for simplicity, only revolute joints here
(see textbook for the more general treatment)

initializations
‘wi = TR g + ¢ 2 Ywy
‘o; = IR +Qii_1zi—1: TR [Trwion + ¢ 2]
AR = i_lRlT:i 1(‘)1 1T CIL Zl 1T CIl wl 1>< Zi—l] Od)o
0 _(0
‘a; =R e + t X s+ e X (Cwg X i) e

[[- [[[[
ai+ wi X Tic+ wiX (w; X ri,ci)

the gravity force term can be skipped in Newton equation, if added here
Robotics 2 2

Backward recursion
Computing forces and moments

eliminated, if inserted
in forward recursion (i=0)

from N; — to N;_; initializations

ifi — iRi_|_1i+1fi+1 + mi(iaci — lg) — fn+1 IN+1
F/MR |
; . - . -
‘T = Ripr T i + (Rt fivn) X i — Yix(Ctrioag + i)

iy 1, i iy 1
from E; —— to E;_, Tl o+ Cwp Xl

at each recursion step, the two vector equations (N: + E:) at joint i provide

a wrench (f;, t;) € R®): this contains ALSO reaction forces/moments at

the joint axis = to be “projected” along/around this axis to produce work
(.
l

fiT izi_l + F,;q; for prismatic joint N scalar
B o= i T i »

1; ‘z;_1+ F,q; for revolute joint equations
T k at the end
generalized forces \ add any dissipative term

(in rhs of Euler-Lagrange eqs) (here, viscous friction only)
Robotics 2

Comments on Newton-Euler method

= the previous forward/backward recursive formulas can
be evaluated in symbolic or numeric form
= symbolic
= substituting expressions in a recursive way

= at the end, a closed-form dynamic model is obtained, which
is identical to the one obtained using Euler-Lagrange (or any
other) method

= there is no special convenience in using N-E in this way ...
= Numeric

= Substituting numeric values (numbers!) at each step

= computational complexity of each step remains constant =
grows in a linear fashion with the number N of joints (O(N))

= strongly recommended for real-time use, especially when the
number N of joints is large

Robotics 2 9

Newton-Euler algorithm ‘
efficient computational scheme for inverse dynamics ¥

(at robot base)

0 0. 0 0
Wp, Wo, Ao — 4
q1 l
q1 > AR
dq 1
1 1. 1
w1, w1, A1, 4dc1
inputs l
. N—1 N-1 - N—-1
WN-1 WN-1, aN-1
dn 1
dn > AR
dn 1
N N- N N
Wy, Wy, Qap, Qcn

Robotics 2

N+1 N+1

fN+1l

numeric steps
at every instant ¢

>u1}

outputs

TN+1

(force/moment exchange
from EE to environment)

10

Matlab (or C) script

_ assuming no interaction
general routine NE, (arg,, arg,, args;) | with the environment
(fv+1= Tn41=0)

= data file (of a specific robot)
= number N and types ¢ = {0,1}" of joints (revolute/prismatic)
= table of DH kinematic parameters
= list of ALL dynamic parameters of the links (and of the motors)
N input
= vector parameter a = {°g, 0} (presence or absence of gravity)
= three ordered vector arguments

= typically, samples of joint position, velocity, acceleration
taken from a desired trajectory

= output
= generalized force u for the complete inverse dynamics
= ... Or single terms of the dynamic model

Robotics 2 11

Examples of output

= complete inverse dynamics
u=NEo;(qq,9a,Ga) = M(qa)qGa + c(qa,qa) + 9(qa) = Uqg
= gravity term

u=NEo,(q,0,0) = g(q)
= centrifugal and Coriolis term

u = NEy(q,9,0) =c(q,9)
= i-th column of the inertia matrix

u = NEy(q,0,¢e;) = M;(q)
= generalized momentum

u = NEy(q,0,4) =M(q)q =p

Robotics 2 12

e; = L-th column
of identity matrix

A further example of output

= factorization of centrifugal and Coriolis term
u=NEy(q,q,0) =c(q,9) =5(q,9)q
= for later use, what about a “"mixed” velocity term?

2 = NE-(a. . 0) = $(a.6.)¢
S(0,d)6, { o(q I) =5(q qr)Qr. o good
u = NEy(q,€;4+i,0) = Si(q, €:qri)Gri

a) S(q,9)q, = S(q, g,)q, when using Christoffel symbols

1
= U= E(NEO(q'q T C.IT' O) T NEO(q' C.L O) _ NEO(CIJ CIT' O))

=S(q,q)q, (i.e., with 3 calls of standard NE algorithm)

[Kawasaki et al., IEEE T-RA 1996]
Robotics 2 13

Modified NE algorithm

modified routine NE, (arg;, arg,, arg,, arg,) with 4 arguments
[De Luca, Ferrajoli, ICRA 2009]

NE,(x,y,y,z) = NE,(x,v,z) consistency property
e€g., U= IVEOg(q, O, O, O) — NEOg(q) O) O) — g(q)
U= IVEO(CIJ él: C.I) 0) — NEO(q' C.I' O) — C(q’ q) = S(q’ q)q

= u=NEy(q,q,4q,,0) = S(q,q)q, with M — 2S skew-symmetric
(i.e., with 1 call of modified NE algorithm)

= U= IVFO(CI; Q; €i, 0) — Sl(q’ q)

(i.e., the full matrix S satisfying the skew-symmetry of

M — 25 with N calls of the modified NE algorithm)
Robotics 2 14

Inverse dynamics of

a 2R planar robot

quintic rest-to-rest polynomial for joint 1

T T T
0 1 L Il Il L 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

position (deg)

position (deg)

288 quintic rest-to-rest polynomial for joint 2

0 /
-200 4 : - L L L
0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

time (s) time (s)
0 v ' ' ' . . ' r % 1000
5 =)
RSt s
- =100~ \/ T = e
8 8
g _200 | 1 | 1 A 1 | 1 : ° 1 A 1 1 1 'l 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-« time (s) - time (s)
® 1000 ; : ; ; , : ; . S 2000
]]
c [
2 0_—,/——\ 2 0
8 =
2 2
§ -1000 - - 4 L . 1 1 1 § -2000 1 L i 1 1 L 1 1 L
= 0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1 © 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time (s) 2r time (s)
1.5
desired (smooth) joint motion: |
quintic polynomials for g1, gz with |

zero vel/acc boundary conditions
from (90°, -180") to (0°,90°) inT =1s

Robotics 2

15

Inverse dynamics of a 2R planar robot %%

total torques for joints 1 and 2

200
100
o el | final torques
initial torques = 1 1 1] 1 . | 1 1 =
free equilibrium '2000 04 02 03 04 05 06 07 08 09 1 Uy # 0, Uy = 0
configuration time {s) balance
+ e ! ' . , link weights
- . 0 0
zero initial in final (0", 90°)
accelerations | ‘ : configuration
£
=
0
-50

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time (s)

motion in vertical plane (under gravity)
both links are thin rods of uniform mass m; = 10 kg, m, = 5 kg

Robotics 2 16

Nm

150

100

50

50+

-100

-150

-200

Inverse dynamics of a 2R planar robot

total torque and contributions for joint 1

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
time (s)

-40
0

total torque and contributions for joint 2

01

0.2 0.3 0.4 0.5 0.6
time (s)

0.7 0.8 0.9 1

torgue contributions at the two joints for the desired motion
—— = total, ---- = inertial

----- = Coriolis/centrifugal,

Robotics 2

= gravitational

17

Use of NE routine for simulation
direct dynamics

= numerical integration, at current state (g, g), of

=M Pu-(c(q9 +39g@)]=M(@u-n(qq9)]
= Coriolis, centrifugal, and gravity terms
n=NEo;(q,q,0) complexity O(N)
s [-th column of the inertia matrix, fori =1,..,N
M; = NEy(q,0, ¢;) O(N?)
= humerical inversion of inertia matrix
InvM = inv(M) _O(NV®)

but with small coefficient
= given u, integrate acceleration computed as

L) new state (q,)
q=InvM * [u-n| =—_ repeat over time ...

Robotics 2 18

