Robotics 2

Dynamic model of robots: Newton-Euler approach

Prof. Alessandro De Luca

Dipartimento di Ingegneria Informatica
automatica e Gestionale Antonio Ruberti

SAPIENZA
UNIVERSITÀ DI ROMA

Approaches to dynamic modeling (reprise)

energy-based approach (Euler-Lagrange)

- multi-body robot seen as a whole
- constraint (internal) reaction forces between the links are automatically eliminated: in fact, they do not perform work
- closed-form (symbolic) equations are directly obtained
- best suited for study of dynamic properties and analysis of control schemes

Newton-Euler method (balance of forces/moments)

- dynamic equations written separately for each link/body
- mainly used for inverse dynamics in real time
- equations are evaluated in a numeric and recursive way
- best for synthesis
(=implementation) of modelbased control schemes
- by eliminating the internal reaction forces and performing back-substitution of all expressions, we get dynamic equations in closed-form (identical to Euler-Lagrange!)

Derivative of a vector in a moving frame

... from velocity to acceleration

$$
\begin{aligned}
{ }^{0} v_{i} & ={ }^{0} R_{i}{ }^{i} v_{i} \\
{ }^{0} \dot{v}_{i} & ={ }^{0} a_{i}={ }^{0} R_{i} \dot{R}_{i}=S\left({ }^{0} \omega_{i}\right)={ }^{0} R_{i}{ }^{i} R_{i} \\
& ={ }^{0} R_{i}+{ }^{0} \dot{R}_{i}{ }^{i} \dot{v}_{i}+{ }^{0} \omega_{i} \times{ }^{0} R_{i}{ }^{i} v_{i}={ }^{0} R_{i}\left({ }^{i} \dot{v}_{i}+{ }^{i} \omega_{i} \times{ }^{i} v_{i}\right)
\end{aligned}
$$

$$
{ }^{i} a_{i}={ }^{i} \dot{v}_{i}+{ }^{i} \omega_{i} \times{ }^{i} v_{i}
$$

Dynamics of a rigid body

- Newton dynamic equation
- balance: sum of forces = variation of linear momentum

$$
\sum f_{i}=\frac{d}{d t}\left(m v_{c}\right)=m \dot{v}_{c}
$$

- Euler dynamic equation
- balance: sum of moments = variation of angular momentum

$$
\begin{aligned}
\sum \mu_{i} & =\frac{d}{d t}(I \omega)=I \dot{\omega}+\frac{d}{d t}\left(R \bar{I} R^{T}\right) \omega=I \dot{\omega}+\left(\dot{R} \bar{I} R^{T}+R \bar{I} \dot{R}^{T}\right) \omega \\
& =I \dot{\omega}+S(\omega) R \bar{I} R^{T} \omega+R \bar{I} R^{T} S^{T}(\omega) \omega=I \dot{\omega}+\omega \times I \omega
\end{aligned}
$$

- principle of action and reaction
- forces/moments: applied by body i to body $i+1$
$=-$ applied by body $i+1$ to body i

Newton-Euler equations - 1

link i

FORCES

f_{i} force applied from link $i-1$ on link i
f_{i+1} force applied from link i on link $i+1$
$m_{i} g$ gravity force
all vectors expressed in the same RF (better in $\mathrm{RF}_{i} \ldots$)

Newton equation

$$
\frac{f_{i}-f_{i+1}+m_{i} g=m_{i} a_{c i}}{\text { linear acceleration of } C_{i}}
$$

Newton-Euler equations - 2

link i

MOMENTS

τ_{i} moment applied from link ($i-1$) on link i
τ_{i+1} moment applied from link i on link $(i+1)$
$f_{i} \times r_{i-1, c i}$ moment due to f_{i} w.r.t. C_{i}
$-f_{i+1} \times r_{i, c i}$ moment due to $-f_{i+1}$ w.r.t. C_{i}
all vectors expressed in the same $\mathrm{RF}\left(\ldots \mathrm{RF}_{i}!!\right)$
Euler equation no moment at C_{i}

$$
\tau_{i}-\tau_{i+1}+f_{i} \times r_{i-1, c i}-f_{i+1} \times r_{i, c i}=I_{i} \dot{\omega}_{i}+\omega_{i} \times\left(I_{i} \omega_{i}\right)
$$

Forward recursion

Computing velocities and accelerations

- "moving frames" algorithm (as for velocities in Lagrange)
- for simplicity, only revolute joints here (see textbook for the more general treatment)

$$
\begin{aligned}
& { }^{i} \omega_{i}={ }^{i-1} R_{i}^{T}\left[{ }^{i-1} \omega_{i-1}+\dot{q}_{i}{ }^{i-1} z_{i-1}\right] \\
& { }^{i} \dot{\omega}_{i}={ }^{i-1} R_{i}^{T}\left[{ }^{i-1} \dot{\omega}_{i-1}+\ddot{q}_{i}{ }^{i-1} z_{i-1}\right]+{ }^{i-1} \dot{R}_{i}^{T}\left[{ }^{i-1} \omega_{i-1}+\dot{q}_{i}{ }^{i-1} z_{i-1}\right] \\
& \mathrm{AR} \quad={ }^{i-1} R_{i}^{T}\left[{ }^{i-1} \dot{\omega}_{i-1}+\ddot{q}_{i}^{i-1} z_{i-1}+\dot{q}_{i}{ }^{i-1} \omega_{i-1} \times{ }^{i-1} z_{i-1}\right] \\
& { }^{i} a_{i}={ }^{i-1} R_{i}^{T i-1} a_{i-1}+{ }^{i} \dot{\omega}_{i} \times{ }^{i} r_{i-1, i}+{ }^{i} \omega_{i} \times\left({ }^{i} \omega_{i} \times{ }^{i} r_{i-1, i}\right) \\
& { }^{i} a_{c i}={ }^{i} a_{i}+{ }^{i} \dot{\omega}_{i} \times{ }^{i} r_{i, c i}+{ }^{i} \omega_{i} \times\left({ }^{i} \omega_{i} \times{ }^{i} r_{i, c i}\right) \\
& \text { the gravity force term can be skipped in Newton equation, if added here }
\end{aligned}
$$

Backward recursion
 Computing forces and moments

from $N_{i} \longrightarrow$ to $N_{i-1} \quad \begin{gathered}\text { eliminated, if inserted } \\ \text { in forward recursion }(i=0)\end{gathered}$ initializations

$$
{ }^{i} f_{i}={ }^{i} R_{i+1}{ }^{i+1} f_{i+1}+m_{i}\left({ }^{i} a_{c i}-\text { (g) }\right)
$$

$$
\longleftarrow f_{N+1}
$$

$$
\tau_{N+1}
$$

F/MR

$$
{ }^{i} \tau_{i}={ }^{i} R_{i+1}{ }^{i+1} \tau_{i+1}+\left({ }^{i} R_{i+1}{ }^{i+1} f_{i+1}\right) \times{ }^{i} r_{i, c i}-{ }^{i} f_{i} \times\left({ }^{i} r_{i-1, i}+{ }^{i} r_{i, c i}\right)
$$

$$
\text { from } E_{i} \longrightarrow \text { to } E_{i-1}
$$

$$
+{ }^{i} I_{i}{ }^{i} \dot{\omega}_{i}+{ }^{i} \omega_{i} \times{ }^{i} I_{i}{ }^{i} \omega_{i}
$$

at each recursion step, the two vector equations ($N_{i}+E_{i}$) at joint i provide a wrench $\left.\left(f_{i}, \tau_{i}\right) \in \mathbb{R}^{6}\right)$: this contains ALSO reaction forces/moments at the joint axis \Rightarrow to be "projected" along/around this axis to produce work

FP | u_{i} |
| :--- | :--- |\(=\left\{\begin{array}{lll}{ }^{i} f_{i}^{T} \& i_{z_{i-1}}+F_{v i} \dot{q}_{i} \& for prismatic joint

{ }^{i} \tau_{i}^{T} \& { }_{z_{z_{i-1}}}+F_{v i} \dot{q}_{i} \& for revolute joint\end{array} \rightarrow $$
\begin{array}{|c}\hline N \text { scalar } \\
\text { equations }\end{array}
$$\right.\)
generalized forces
(in rhs of Euler-Lagrange eqs) (here, viscous friction only)

Comments on Newton-Euler method

- the previous forward/backward recursive formulas can be evaluated in symbolic or numeric form
- symbolic
- substituting expressions in a recursive way
- at the end, a closed-form dynamic model is obtained, which is identical to the one obtained using Euler-Lagrange (or any other) method
- there is no special convenience in using N-E in this way ...
- numeric
- substituting numeric values (numbers!) at each step
- computational complexity of each step remains constant \Rightarrow grows in a linear fashion with the number N of joints $(O(N))$
- strongly recommended for real-time use, especially when the number N of joints is large

Newton-Euler algorithm

 efficient computational scheme for inverse dynamics

Matlab (or C) script

general routine $N E_{\alpha}\left(\arg _{1}, \arg _{2}, \arg _{3}\right)$

- data file (of a specific robot)
assuming no interaction with the environment

$$
\left(f_{N+1}=\tau_{N+1}=0\right)
$$

- number N and types $\sigma=\{0,1\}^{N}$ of joints (revolute/prismatic)
- table of DH kinematic parameters
- list of ALL dynamic parameters of the links (and of the motors)
- input
- vector parameter $\alpha=\left\{{ }^{0} g, 0\right\}$ (presence or absence of gravity)
- three ordered vector arguments
- typically, samples of joint position, velocity, acceleration taken from a desired trajectory
- output
- generalized force u for the complete inverse dynamics
- ... or single terms of the dynamic model

Examples of output

- complete inverse dynamics

$$
u=N E_{{ }_{g}}\left(q_{d}, \dot{q}_{d}, \ddot{q}_{d}\right)=M\left(q_{d}\right) \ddot{q}_{d}+c\left(q_{d}, \dot{q}_{d}\right)+g\left(q_{d}\right)=u_{d}
$$

- gravity term

$$
u=N E_{0_{g}}(q, 0,0)=g(q)
$$

- centrifugal and Coriolis term

$$
u=N E_{0}(q, \dot{q}, 0)=c(q, \dot{q})
$$

- i-th column of the inertia matrix

$$
u=N E_{0}\left(q, 0, e_{i}\right)=M_{i}(q) \quad \begin{aligned}
& e_{i}=i \text {-th column } \\
& \text { of identity matrix }
\end{aligned}
$$

- generalized momentum

$$
u=N E_{0}(q, 0, \dot{q})=M(q) \dot{q}=p
$$

A further example of output

- factorization of centrifugal and Coriolis term

$$
u=N E_{0}(q, \dot{q}, 0)=c(q, \dot{q})=S(q, \dot{q}) \dot{q}
$$

- for later use, what about a "mixed" velocity term?

$$
S(q, \dot{q}) \dot{q}_{r} \nLeftarrow\left\{\begin{array}{l}
u=N E_{0}\left(q, \dot{q}_{r}, 0\right)=S\left(q, \dot{q}_{r}\right) \dot{q}_{r} \\
u=N E_{0}\left(q, e_{i} \dot{q}_{r i}, 0\right)=S_{i}\left(q, e_{i} \dot{q}_{r i}\right) \dot{q}_{r i}
\end{array}\right. \text { no good! }
$$

a) $S(q, \dot{q}) \dot{q}_{r}=S\left(q, \dot{q}_{r}\right) \dot{q}$, when using Christoffel symbols
b) $S\left(q, \dot{q}+\dot{q}_{r}\right)\left(\dot{q}+\dot{q}_{r}\right)=S(q, \dot{q}) \dot{q}+S\left(q, \dot{q}_{r}\right) \dot{q}_{r}+2 S(q, \dot{q}) \dot{q}_{r}$

$$
\begin{aligned}
\Rightarrow u & =\frac{1}{2}\left(N E_{0}\left(q, \dot{q}+\dot{q}_{r}, 0\right)-N E_{0}(q, \dot{q}, 0)-N E_{0}\left(q, \dot{q}_{r}, 0\right)\right) \\
& =S(q, \dot{q}) \dot{q}_{r} \quad \text { (i.e., with } 3 \text { calls of standard NE algorithm) }
\end{aligned}
$$

Modified NE algorithm

modified routine $\widehat{N E},\left(\arg _{1}, \arg _{2}, \arg _{3}, \arg _{4}\right)$ with 4 arguments
[De Luca, Ferrajoli, ICRA 2009]

$$
\begin{aligned}
& \widehat{N E}_{\alpha}(x, y, y, z)=N E_{\alpha}(x, y, z) \quad \text { consistency property } \\
& \text { e.g., } u= \widehat{N E}_{{ }_{0}}(q, 0,0,0)=N E_{0_{g}}(q, 0,0)=g(q) \\
& u= \widehat{N E}_{0}(q, \dot{q}, \dot{q}, 0)=N E_{0}(q, \dot{q}, 0)=c(q, \dot{q})=S(q, \dot{q}) \dot{q} \\
& \Rightarrow u= \widehat{N E}_{0}\left(q, \dot{q}, \dot{q}_{r}, 0\right)=S(q, \dot{q}) \dot{q}_{r} \text { with } \dot{M}-2 S \text { skew-symmetric } \\
& \text { (i.e., with } 1 \text { call of modified NE algorithm) } \\
& \Rightarrow u= \widehat{N E}_{0}\left(q, \dot{q}, e_{i}, 0\right)=S_{i}(q, \dot{q}) \\
& \text { (i.e., the full matrix } S \text { satisfying the skew-symmetry of } \\
& \dot{M}-2 S \text { with } N \text { calls of the modified NE algorithm) }
\end{aligned}
$$

Inverse dynamics of a 2 R planar robot

Inverse dynamics of a 2 R planar robot

Inverse dynamics of a 2 R planar robot

torque contributions at the two joints for the desired motion __ = total, ---- = inertial -.-.- = Coriolis/centrifugal, = gravitational

Use of NE routine for simulation

 direct dynamics- numerical integration, at current state (q, \dot{q}), of

$$
\ddot{q}=M^{-1}(q)[u-(c(q, \dot{q})+g(q))]=M^{-1}(q)[u-n(q, \dot{q})]
$$

- Coriolis, centrifugal, and gravity terms

$$
n=N E_{0}(q, \dot{q}, 0) \quad \text { complexity } O(N)
$$

- i-th column of the inertia matrix, for $i=1, . ., N$

$$
\begin{equation*}
M_{i}=N E_{0}\left(q, 0, e_{i}\right) \tag{2}
\end{equation*}
$$

- numerical inversion of inertia matrix

$$
\operatorname{InvM}=\operatorname{inv}(M) \quad \begin{aligned}
& O\left(N^{3}\right) \\
& \text { but with small co }
\end{aligned}
$$

but with small coefficient

- given u, integrate acceleration computed as

$$
\ddot{q}=\operatorname{InvM} *[u-n] \quad \longrightarrow \quad \begin{gathered}
\text { new state }(q, \dot{q}) \\
\text { and repeat over time } \ldots
\end{gathered}
$$

