
Robotics 2

Prof. Alessandro De Luca

Dynamic model of robots:
Newton-Euler approach

Approaches to dynamic modeling
(reprise)

energy-based approach
(Euler-Lagrange)

n multi-body robot seen as a whole

n constraint (internal) reaction forces
between the links are automatically
eliminated: in fact, they do not
perform work

n closed-form (symbolic) equations
are directly obtained

n best suited for study of dynamic
properties and analysis of control
schemes

Newton-Euler method
 (balance of forces/moments)

n dynamic equations written
separately for each link/body

n mainly used for inverse dynamics
in real time
n equations are evaluated in a

numeric and recursive way
n best for synthesis

(=implementation) of model-
based control schemes

n by eliminating the internal reaction forces
and performing back-substitution of all
expressions, we get dynamic equations in
closed-form (identical to Euler-Lagrange!)

Robotics 2 2

Derivative of a vector in a moving frame
… from velocity to acceleration

!𝑅̇" = 𝑆 0𝜔" 0𝑅"

!𝜔!

derivative of a “unit” vector
in a moving frame

𝑖𝑒!

𝑑 𝑖𝑒!
𝑑𝑡 = 𝑖𝜔! × 𝑖𝑒!

Robotics 2 3

!𝑣" = 0𝑅" 𝑖𝑣"
!𝑣̇" = 0𝑎" = 0𝑅" 𝑖𝑎" = 0𝑅" "𝑣̇" + 0𝑅̇" 𝑖𝑣"

= 0𝑅" "𝑣̇" + 0𝜔" × 0𝑅" 𝑖𝑣" = 0𝑅" #𝑣̇# + #𝜔# × 𝑖𝑣"

"𝑎" = "𝑣̇" + "𝜔" × 𝑖𝑣"

Dynamics of a rigid body
n Newton dynamic equation

n balance: sum of forces = variation of linear momentum

n Euler dynamic equation
n balance: sum of moments = variation of angular momentum

n principle of action and reaction
n forces/moments: applied by body 𝑖 to body 𝑖 + 1
 = − applied by body 𝑖 + 1 to body 𝑖

!𝑓! =
𝑑
𝑑𝑡 𝑚𝑣" = 𝑚𝑣̇"

!𝜇! =
𝑑
𝑑𝑡 𝐼𝜔

= 𝐼𝜔̇ + 𝑆 𝜔 𝑅 ̅𝐼𝑅#𝜔 +𝑅 ̅𝐼𝑅#𝑆# 𝜔 𝜔

Robotics 2 4

= 𝐼𝜔̇ + 𝜔 × 𝐼𝜔

= 𝐼𝜔̇ +
𝑑
𝑑𝑡 𝑅 ̅𝐼𝑅$ 𝜔 = 𝐼𝜔̇ + 𝑅̇ ̅𝐼𝑅$ + 𝑅 ̅𝐼𝑅̇$ 𝜔

Newton-Euler equations - 1
link 𝑖

axis 𝑖
(𝑞!)

𝒗𝒄𝒊

axis 𝑖 + 1
 (𝑞!$%)

. .
𝑓!$%

𝑧"

𝑚!𝑔

𝑓! force applied
from link 𝑖 − 1 on link 𝑖

𝑓!$% force applied
from link 𝑖	on link 𝑖 + 1

Newton equation

𝑚!𝑔 gravity force

all vectors expressed in the
same RF (better in RF𝑖 …)

FORCES

N

𝑧"#$

linear acceleration of 𝐶!

center
of mass
𝑪𝒊

𝑓!
𝑂!𝑂!&%

𝑓# − 𝑓#&' +𝑚#𝑔 = 𝑚#𝑎(#

Robotics 2 5

Newton-Euler equations - 2
link 𝑖

. .
𝑟!&%,(!

𝜏! moment applied
from link (𝑖 − 1) on link 𝑖
𝜏!$% moment applied
from link 𝑖	on link (𝑖 + 1)

Euler equation

MOMENTS

𝑓! × 𝑟!&%,"! moment due to 𝑓! w.r.t. 𝐶!

−𝑓!$%× 𝑟!,(! moment due to −𝑓!$% w.r.t. 𝐶!

E

all vectors expressed in
the same RF (… RF𝑖 !!)gravity force gives

no moment at 𝐶!

axis 𝑖
(𝑞!)

axis 𝑖 + 1
 (𝑞!$%)

𝑓!$%

𝑧"𝑧"#$

𝑓! 𝑂!𝑂!&%

𝜏!$%𝜏!

𝜔!

𝑟!,(!

𝑪𝒊

𝜏# − 𝜏#&' + 𝑓# × 𝑟#)',(# −𝑓#&' × 𝑟#,(#= 𝐼#𝜔̇# +𝜔#× 𝐼#𝜔#
angular acceleration of body 𝑖

Robotics 2 6

Forward recursion
 Computing velocities and accelerations

§ “moving frames” algorithm (as for velocities in Lagrange)
§ for simplicity, only revolute joints here
 (see textbook for the more general treatment)

initializations

Robotics 2 7

the gravity force term can be skipped in Newton equation, if added here

AR

!𝜔! = !&%𝑅!# !&%𝜔!&% + 𝑞̇! !&%𝑧!&%
!𝜔̇! = !&%𝑅!# !&%𝜔̇!&% + 𝑞̈! !&%𝑧!&% + !&%𝑅̇!# !&%𝜔!&% + 𝑞̇! !&%𝑧!&%

= !&%𝑅!#
!&%𝜔̇!&% + 𝑞̈! !&%𝑧!&% + 𝑞̇! !&%𝜔!&%×!&%𝑧!&%

!𝑎! = !&%𝑅!#!&%𝑎!&% + !𝜔̇! × !𝑟!&%,! + !𝜔! × !𝜔! × !𝑟!&%,!
!𝑎"! = !𝑎! + !𝜔̇! × !𝑟!,"! + !𝜔! × !𝜔! × !𝑟!,"!

(𝜔(

(𝜔̇(
(𝑎(− 0𝑔

𝑢! = ;
!𝑓!# !𝑧!&% +𝐹)!𝑞̇!
!𝜏!# !𝑧!&% +𝐹)!𝑞̇!

Backward recursion
 Computing forces and moments

at each recursion step, the two vector equations (𝑁𝑖 + 𝐸𝑖) at joint 𝑖 provide
a wrench (𝑓!, 𝜏!) ∈ ℝ*): this contains ALSO reaction forces/moments at
the joint axis ⇒ to be “projected” along/around this axis to produce work

from 𝑁! to 𝑁!&%

from 𝐸! to 𝐸!&%

F/MR

generalized forces
(in rhs of Euler-Lagrange eqs)

for prismatic joint
for revolute joint

𝑁 scalar
equationsFP
at the end

initializations
𝑓)$% 𝜏)$%

Robotics 2 8

!𝑓! = !𝑅!$%!$%𝑓!$% +𝑚!
!𝑎"! − !𝑔

eliminated, if inserted
in forward recursion (𝑖=0)

!𝜏! = !𝑅!$%!$%𝜏!$% + !𝑅!$%!$%𝑓!$% × !𝑟!,"! − !𝑓! × !𝑟!&%,! + !𝑟!,"!
+ !𝐼! !𝜔̇! + !𝜔! × !𝐼! !𝜔!

add any dissipative term
(here, viscous friction only)

Comments on Newton-Euler method
n the previous forward/backward recursive formulas can

be evaluated in symbolic or numeric form
n symbolic

n substituting expressions in a recursive way
n at the end, a closed-form dynamic model is obtained, which

is identical to the one obtained using Euler-Lagrange (or any
other) method

n there is no special convenience in using N-E in this way …
n numeric

n substituting numeric values (numbers!) at each step
n computational complexity of each step remains constant ⇒

grows in a linear fashion with the number 𝑁 of joints (𝑂(𝑁))
n strongly recommended for real-time use, especially when the

number 𝑁 of joints is large

Robotics 2 9

Newton-Euler algorithm
efficient computational scheme for inverse dynamics

AR

AR

F/MR

F/MR

FP

FP

inputs outputs

(force/moment exchange
from EE to environment)

(at robot base) numeric steps
at every instant 𝑡

Robotics 2 10

𝑢%

𝑢)

𝑞%
𝑞̇%
𝑞̈%

$𝑓$, $𝜏$

%𝑓%, %𝜏%

&𝑓&,
&𝜏&

&'$𝑓&'$,
&'$𝜏&'$

𝑞)
𝑞̇)
𝑞̈)

(𝜔(,
(𝜔̇(,

(𝑎(−
(𝑔

$𝜔$, $𝜔̇$, $𝑎$, $𝑎)$

&𝜔&, &𝜔̇&, &𝑎&, &𝑎)&

&#$𝜔&#$, &#$𝜔̇&#$, &#$𝑎&#$, &#$𝑎),&#$

n data file (of a specific robot)
n number 𝑁 and types σ = 0,1 + of joints (revolute/prismatic)
n table of DH kinematic parameters
n list of ALL dynamic parameters of the links (and of the motors)

n input
n vector parameter 𝛼 = 0𝑔, 0 (presence or absence of gravity)
n three ordered vector arguments

n typically, samples of joint position, velocity, acceleration
taken from a desired trajectory

n output
n generalized force 𝑢 for the complete inverse dynamics
n … or single terms of the dynamic model

general routine𝑁𝐸#(arg1, arg2, arg3)

Matlab (or C) script

Robotics 2 11

assuming no interaction
with the environment

(𝑓&'$= 𝜏&'$= 0)

Examples of output

n complete inverse dynamics

n gravity term

n centrifugal and Coriolis term

n 𝑖-th column of the inertia matrix

n generalized momentum

𝑒! = 𝑖-th column
of identity matrix

𝑢 = 𝑁𝐸 "5(𝑞, 0, 0) = 𝑔(𝑞)

𝑢 = 𝑁𝐸6(𝑞, 0, 𝑒#) = 𝑀#(𝑞)

𝑢 = 𝑁𝐸6 𝑞, 0, 𝑞̇ = 𝑀 𝑞 𝑞̇ = 𝑝

𝑢 = 𝑁𝐸6(𝑞, 𝑞̇, 0) = 𝑐(𝑞, 𝑞̇)

𝑢 = 𝑁𝐸 "5(𝑞𝑑, 𝑞̇7, 𝑞̈7) = 𝑀(𝑞7)𝑞̈7 + 𝑐(𝑞7, 𝑞̇7) + 𝑔(𝑞7) = 𝑢7

Robotics 2 12

A further example of output
n factorization of centrifugal and Coriolis term

n for later use, what about a “mixed” velocity term?
𝑢 = 𝑁𝐸6 𝑞, 𝑞̇, 0 = 𝑐 𝑞, 𝑞̇ = 𝑆(𝑞, 𝑞̇)𝑞̇

𝑆(𝑞, 𝑞̇)𝑞̇8
𝑢 = 𝑁𝐸6(𝑞, 𝑞̇8, 0) = 𝑆(𝑞, 𝑞̇8)𝑞̇8
𝑢 = 𝑁𝐸6(𝑞, 𝑒#𝑞̇8# , 0) = 𝑆#(𝑞, 𝑒#𝑞̇8#)𝑞̇8#

⇎

𝑆 𝑞, 𝑞̇ 𝑞̇8 = 𝑆 𝑞, 𝑞̇8 𝑞̇ , when using Christoffel symbolsa)

𝑢 =
1
2 𝑁𝐸6 𝑞, 𝑞̇ + 𝑞̇8, 0 − 𝑁𝐸6 𝑞, 𝑞̇, 0 − 𝑁𝐸6(𝑞, 𝑞̇8, 0)

= 𝑆 𝑞, 𝑞̇ 𝑞̇8

⇒

𝑆 𝑞, 𝑞̇ + 𝑞̇8 𝑞̇ + 𝑞̇8 = 𝑆 𝑞, 𝑞̇ 𝑞̇ + 𝑆 𝑞, 𝑞̇8 𝑞̇8 + 2𝑆 𝑞, 𝑞̇ 𝑞̇8b)

(i.e., with 3 calls of standard NE algorithm)

no good!

[Kawasaki et al., IEEE T-RA 1996]
Robotics 2 13

Modified NE algorithm
modified routine 2𝑁𝐸#(arg1, arg2, arg3, arg4) with 4 arguments

E𝑁𝐸: 𝑥, 𝑦, 𝑦, 𝑧 = 𝑁𝐸:(𝑥, 𝑦, 𝑧)

𝑢 = E𝑁𝐸 "5 𝑞, 0, 0, 0 = 𝑁𝐸 "5 𝑞, 0, 0 = 𝑔(𝑞)

𝑢 = E𝑁𝐸6 𝑞, 𝑞̇, 𝑞̇, 0 = 𝑁𝐸6 𝑞, 𝑞̇, 0 = 𝑐 𝑞, 𝑞̇ = 𝑆(𝑞, 𝑞̇)𝑞̇

(i.e., with 1 call of modified NE algorithm)

𝑢 = E𝑁𝐸6 𝑞, 𝑞̇, 𝑒# , 0 = 𝑆#(𝑞, 𝑞̇)⇒

𝑢 = E𝑁𝐸6 𝑞, 𝑞̇, 𝑞̇8, 0 = 𝑆(𝑞, 𝑞̇)𝑞̇8⇒ with 𝑀̇ − 2𝑆 skew-symmetric

(i.e., the full matrix 𝑆 satisfying the skew-symmetry of
 𝑀̇ − 2𝑆 with 𝑁 calls of the modified NE algorithm)

[De Luca, Ferrajoli, ICRA 2009]

e.g.,

consistency property

Robotics 2 14

Inverse dynamics of a 2R planar robot

desired (smooth) joint motion:
quintic polynomials for 𝑞%, 𝑞,	with
zero vel/acc boundary conditions

from (90o, -180o) to (0o, 90o) in 𝑇 = 1 s

⇔

Robotics 2 15

Inverse dynamics of a 2R planar robot

motion in vertical plane (under gravity)
both links are thin rods of uniform mass 𝑚% = 10 kg, 𝑚* = 5 kg

zero
initial torques =
free equilibrium
configuration

+
zero initial

accelerations

final torques
𝑢% ≠ 0, 𝑢* = 0

balance
link weights

in final (0o, 90o)
configuration

Robotics 2 16

Inverse dynamics of a 2R planar robot

torque contributions at the two joints for the desired motion
 = total, = inertial
 = Coriolis/centrifugal, = gravitational

Robotics 2 17

Use of NE routine for simulation
direct dynamics

n numerical integration, at current state (𝑞, 𝑞̇), of

n Coriolis, centrifugal, and gravity terms

n 𝑖-th column of the inertia matrix, for 𝑖	 = 1, . . , 𝑁

n numerical inversion of inertia matrix

n given 𝑢, integrate acceleration computed as

𝑀# = 𝑁𝐸6(𝑞, 0, 𝑒#)

𝐼𝑛𝑣𝑀 = inv(𝑀)

𝑞̈ = 𝑀)'(𝑞)[𝑢	– (𝑐(𝑞, 𝑞̇) + 𝑔(𝑞))] = 𝑀)'(𝑞)[𝑢	– 	𝑛(𝑞, 𝑞̇)]

complexity 𝑂(𝑁)

𝑂(𝑁,)

𝑂(𝑁-)
but with small coefficient

𝑛 = 𝑁𝐸 "5(𝑞, 𝑞̇, 0)

𝑞̈ = 𝐼𝑛𝑣𝑀 ∗ [𝑢	– 𝑛] new state (𝑞, 𝑞̇)
and repeat over time ...

Robotics 2 18

