Robotics 2

Dynamic model of robots: Algorithm for computing kinetic energy

Prof. Alessandro De Luca

SAPIENZA
UNIVERSITÀ DI ROMA

Complexity of robot inertia terms element $m_{11}(q)$ of Stanford arm

$m_{11}=m, k_{122}^{2} \quad \ldots$ (derived by hand) in JPL Tech. Memo. 33-669, 1974
$+m_{2}\left[x_{211}^{2} 1^{2} \dot{o}_{2}+x_{233}^{2} c^{2} \theta_{2}+r_{2}\left(2 \bar{v}_{2}+r_{2}\right]\right.$
$+m_{3}\left[x_{32}^{2} 2^{2} \dot{\theta}_{2}+x_{33}^{2} c^{2} \theta_{2}+r_{3}\left(2 \bar{z}_{3}+r_{3} \cdot \cdot^{2} \theta_{2}+r_{2}^{2}\right]\right.$
$\cdot m_{4}\left\{\frac{1}{2} x_{211}^{2}\left[.^{2} \theta_{2}\left(22^{2} 0_{4}-1\right)+\theta^{2} \theta_{4}\right] \cdot \frac{1}{2} x_{421^{1}}^{2}+c^{2} \theta_{2}+e^{2} \theta_{4}\right)$

a typical term $\sin \theta_{2} \sin \theta_{5}-\cos \theta_{2} \sin \theta_{4} \cos \theta_{5}$
$-\frac{1}{2}\left(x_{511}^{2}+x_{522}^{2}-x_{533}^{2}\right)\left[\left(\theta_{2}-\theta_{5}+c \theta_{2}+\theta_{4}+\theta_{5}\right)^{2}+c^{2} \theta_{1} \theta^{2} \theta_{5}\right]+r_{3}^{2}{ }^{2} \theta_{2}+r_{2}^{2}$

radius of gyration factors $k_{i j j}^{2}$ are being used here for a body of mass m_{i} and moment of inertia I_{j} with respect to an axis z_{j}, the radius of gyration $k_{i j j}$ is the distance of the mass m_{i} from the same axis, such that $I_{j}=m_{i} k_{i j j}^{2}$
$-\frac{1}{2}\left(x_{611}^{2}+x_{622}^{2}-x_{633}^{2}\right)\left[\left(c o_{2}+\theta_{4}+\theta_{5}+\theta_{2}=\theta_{5}\right)^{2}+c^{2} 9_{9}{ }^{2}{ }^{2} s_{5}\right]$

$\left.\left.\left.+r_{3}+\theta_{2} \theta_{2} \theta_{2}+e_{4}+\theta_{5}+N^{2} \theta_{2}+\theta_{5}\right) \cdot r_{2} \theta_{4} \theta_{4}+\theta_{5}\right\}\right\}$

Expression of $v_{c i}$ and ω_{i}

- $v_{c i}$ and ω_{i} can be written using the relations of the robot differential kinematics (partial Jacobians)
- it is useful however to operate in a recursive way, expressing each vector quantity related to link i in the "moving" frame RF_{i} attached to link i (with the notation ${ }^{i}$ vector $_{i}$)
- particularly convenient when using algebraic/symbolic manipulation languages (Matlab Symbolic Toolbox, Maple, Mathematica, ...) for computing the kinetic energy of a (open chain) robot arm, when the number of joints increases (e.g., for $N \geq 4$)

Moving Frames

Recall: D-H frames

joint $i-1$ axis

$$
{ }^{i-1} A_{i}\left(q_{i}\right)=\left(\begin{array}{ccc|c}
\begin{array}{ccc}
\cos \theta_{i} & -\cos \alpha_{i} \sin \theta_{i} & \sin \alpha_{i} \sin \theta_{i} \\
\sin \theta_{i} & \cos \alpha_{i} \cos \theta_{i} & -\sin \alpha_{i} \cos \theta_{i}
\end{array} & \begin{array}{c}
a_{i} \cos \theta_{i} \\
a_{i} \sin \theta_{i} \\
0
\end{array} & \sin \alpha_{i} & \cos \alpha_{i}
\end{array}\right]: d_{i} .
$$

Moving Frames algorithm

Dynamic model of a 2 R robot
 application of the algorithm

assumption: center of mass of each link is on its kinematic axis
initialization: $i=0$

$$
{ }^{0} \omega_{0}=0 \quad{ }^{0} v_{0}=0
$$

Dynamic model of a 2 R robot

 what if the CoM is not on the kinematic axis ...see Robotics 2 Midterm 2021 (14 April)

$$
\begin{aligned}
& y_{0} \\
& \begin{aligned}
{ }^{i-1} R_{i}\left(q_{i}\right) & =\left(\begin{array}{ccc}
\left(\begin{array}{cc}
c_{i} & -s_{i} \\
s_{i} & c_{i}
\end{array}\right. & 0 \\
0 & 0 & 1
\end{array}\right) \\
{ }^{i} r_{c i} & \left.=\left(\begin{array}{c}
r_{c i, x} \\
r_{c i, y} \\
0
\end{array}\right) \quad \begin{array}{l}
\text { may also work } \\
\text { in 2D (planar case) } \\
i-1 \\
\bar{R}_{i}\left(q_{i}\right), \\
i^{{ }_{r}}
\end{array}\right)
\end{aligned} \\
& T_{1}=\frac{1}{2} m_{1}\left\|\boldsymbol{v}_{c 1}\right\|^{2}+\frac{1}{2} \boldsymbol{\omega}_{1}^{T} \boldsymbol{I}_{1} \boldsymbol{\omega}_{1} \\
& =\frac{1}{2} m_{1}\left(\left(l_{1}+r_{c 1, x}\right)^{2}+r_{c 1, y}^{2}\right) \dot{q}_{1}^{2}+\frac{1}{2} I_{1} \dot{q}_{1}^{2} \\
& { }^{0} \boldsymbol{p}_{c 2}=\binom{l_{1} c_{1}}{l_{1} s_{1}}+{ }^{0} \overline{\boldsymbol{R}}_{2}\left(q_{1}, q_{2}\right)\binom{l_{2}+r_{c 2, x}}{r_{c 2, y}} \\
& { }^{0} \overline{\boldsymbol{R}}_{2}\left(q_{1}, q_{2}\right)=\left(\begin{array}{cc}
c_{12} & -s_{12} \\
s_{12} & c_{12}
\end{array}\right) \quad \text { etc } \ldots
\end{aligned}
$$

First step (link 1)

$i=1$

$$
{ }^{1} \omega_{1}={ }^{0} R_{1}^{T}\left(q_{1}\right)\left[{ }^{0} \omega_{0}+\dot{q}_{1}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right]=\left(\begin{array}{l}
0 \\
0 \\
\dot{q}_{1}
\end{array}\right)
$$

${ }^{1} v_{1}={ }^{0} R_{1}^{T}\left(q_{1}\right)\left[\begin{array}{c}\left.{ }^{0} v_{0}+\left(\begin{array}{c}0 \\ 0 \\ \dot{q}_{1}\end{array}\right) \times\left(\begin{array}{c}l_{1} c_{1} c_{1} \\ l_{1} s_{1} \\ 0\end{array}\right)\right]={ }^{0} R_{1}^{T}\left(q_{1}\right)\left(\begin{array}{c}0 \\ 0 \\ \dot{q}_{1}\end{array}\right) \times{ }^{0} R_{1}^{T}\left(q_{1}\right)\left(\begin{array}{c}l_{1} c_{1} c_{1} \\ l_{1} s_{1} \\ 0\end{array}\right)\end{array}\right.$
$=\left(\begin{array}{l}0 \\ 0 \\ \dot{q}_{1}\end{array}\right) \times\left(\begin{array}{l}l_{1} \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{c}0 \\ l_{1} \dot{q}_{1} \\ 0\end{array}\right)$

$$
{ }^{1} v_{c 1}=\left(\begin{array}{c}
0 \\
l_{1} \dot{q}_{1} \\
0
\end{array}\right)+\left(\begin{array}{c}
0 \\
0 \\
\dot{q}_{1}
\end{array}\right) \times\left(\begin{array}{c}
-l_{1}+d_{1} \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
0 \\
d_{1} \dot{q}_{1} \\
0
\end{array}\right)
$$

Kinetic energy of link 1

$$
{ }^{1} \omega_{1}=\left(\begin{array}{c}
0 \\
0 \\
\dot{q}_{1}
\end{array}\right) \quad{ }^{1} v_{c 1}=\left(\begin{array}{c}
0 \\
d_{1} \dot{q}_{1} \\
0
\end{array}\right)
$$

$$
T_{1}=\frac{1}{2} m_{1} d_{1}^{2} \dot{q}_{1}^{2}+\frac{1}{2} I_{c 1, z z} \dot{q}_{1}^{2}=\frac{1}{2} \underbrace{\left(I_{c 1, z z}+m_{1} d_{1}^{2}\right.}_{\uparrow}) \underbrace{2}_{i}
$$

the actual inertia around the rotation axis of the first joint (parallel axis theorem)

Second step (link 2)

$$
\begin{gathered}
i=2 \quad{ }^{2} \omega_{2}={ }^{1} R_{2}^{T}\left(q_{2}\right)\left[{ }^{1} \omega_{1}+\dot{q}_{2}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right]=\left(\begin{array}{c}
0 \\
0 \\
\dot{q}_{1}+\dot{q}_{2}
\end{array}\right) \\
{ }^{2} v_{2}={ }^{1} R_{2}^{T}\left(q_{2}\right)\left[\begin{array}{c}
\left.{ }^{1} v_{1}+\left(\begin{array}{c}
0 \\
0 \\
\dot{q}_{1}+\dot{q}_{2}
\end{array}\right) \times\left(\begin{array}{c}
l_{2} c_{2} \\
l_{2} s_{2} \\
0
\end{array}\right)\right]=\left(\begin{array}{c}
l_{1} s_{2} \dot{q}_{1} \\
l_{1} c_{1} \dot{q}_{1} \\
0
\end{array}\right)+\left(\begin{array}{c}
0 \\
0 \\
\dot{q}_{1}+\dot{q}_{2}
\end{array}\right) \times\left(\begin{array}{l}
l_{2} \\
0 \\
0
\end{array}\right) \\
=\left(\begin{array}{c}
l_{1} s_{2} \dot{q}_{1} \\
\left.l_{1} c_{2} \dot{q}_{1}+l_{2} \dot{q}_{1}+\dot{q}_{2}\right) \\
0
\end{array}\right)
\end{array}\right.
\end{gathered}
$$

Kinetic energy of link 2

$$
i=2
$$

$$
{ }^{2} v_{c 2}={ }^{2} v_{2}+\left(\begin{array}{c}
0 \\
0 \\
\dot{q}_{1}+\dot{q}_{2}
\end{array}\right) \times\left(\begin{array}{c}
-l_{2}+d_{2} \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
l_{1} s_{2} \dot{q}_{1} \\
l_{1} c_{2} \dot{q}_{1}+d_{2}\left(\dot{q}_{1}+\dot{q}_{2}\right) \\
0
\end{array}\right)
$$

$$
\begin{aligned}
T_{2}= & \frac{1}{2} m_{2}\left(l_{1}^{2} \dot{q}_{1}^{2}+d_{2}^{2}\left(\dot{q}_{1}+\dot{q}_{2}\right)^{2}+2 l_{1} d_{2} c_{2} \dot{q}_{1}\left(\dot{q}_{1}+\dot{q}_{2}\right)\right) \\
& +\frac{1}{2} I_{c 2, z z}\left(\dot{q}_{1}+\dot{q}_{2}\right)^{2}
\end{aligned}
$$

Robot inertia matrix $M(q)$

$$
T=T_{1}+T_{2}=\frac{1}{2}\left(\begin{array}{ll}
\dot{q}_{1} & \dot{q}_{2}
\end{array}\right)^{T}\left(\begin{array}{cc}
m_{11}(q) & m_{12}(q) \\
m_{21}(q) & m_{22}
\end{array}\right)\binom{\dot{q}_{1}}{\dot{q}_{2}}
$$

$$
\begin{aligned}
m_{11}(q) & =I_{c 1, z z}+m_{1} d_{1}^{2}+I_{c 2, z z}+m_{2} d_{2}^{2}+m_{2} l_{1}^{2}+2 m_{2} l_{1} d_{2} c_{2} \\
& =a_{1}+2 a_{2} \cos q_{2}
\end{aligned}
$$

$$
m_{12}(q)=m_{21}(q)=I_{c 2, z z}+m_{2} d_{2}^{2}+m_{2} l_{1} d_{2} c_{2}=a_{3}+a_{2} \cos q_{2}
$$

$$
m_{22}=I_{c 2, z z}+m_{2} d_{2}^{2}=a_{3}
$$

NOTE: introduction of dynamic coefficients a_{i} is a convenient regrouping of the dynamic parameters (more on this later \rightarrow linear parametrization of dynamics)

Centrifugal and Coriolis terms

$$
\begin{gathered}
C_{1}(q)=\frac{1}{2}\left(\frac{\partial M_{1}}{\partial q}+\left(\frac{\partial M_{1}}{\partial q}\right)^{T}-\frac{\partial M}{\partial q_{1}}\right)=\frac{1}{2}\left(\left(\begin{array}{cc}
0 & -2 a_{2} s_{2} \\
0 & -a_{2} s_{2}
\end{array}\right)+\left(\begin{array}{cc}
0 & 0 \\
-2 a_{2} s_{2} & -a_{2} s_{2}
\end{array}\right)\right) \\
=\left(\begin{array}{cc}
0 & -a_{2} s_{2} \\
-a_{2} s_{2} & -a_{2} s_{2}
\end{array}\right) \\
-\cdots-\cdots \quad c_{1}(q, \dot{q})=-a_{2} s_{2}\left(\dot{q}_{2}^{2}+2 \dot{q}_{1} \dot{q}_{2}\right) \\
C_{2}(q)=\frac{1}{2}\left(\frac{\partial M_{2}}{\partial q}+\left(\frac{\partial M_{2}}{\partial q}\right)^{T}-\frac{\partial M}{\partial q_{2}}\right)=\cdots=\left(\begin{array}{cc}
a_{2} s_{2} & 0 \\
0 & 0
\end{array}\right) \\
c_{2}(q, \dot{q})=a_{2} s_{2} \dot{q}_{1}^{2}
\end{gathered}
$$

Gravity terms

$$
\begin{gathered}
U_{1}=-m_{1} g^{T} r_{0, c 1}=-m_{1}\left(\begin{array}{lll}
0 & -g_{0} & 0
\end{array}\right)\binom{d_{1} s_{1}}{*}=m_{1} g_{0} d_{1} s_{1} \\
U_{2}=-m_{2} g^{T} r_{0, c 2}=m_{2} g_{0}\left(l_{1} s_{1}+d_{2} s_{12}\right) \\
U=U_{1}+U_{2}
\end{gathered}
$$

$$
g(q)=\left(\frac{\partial U}{\partial q}\right)^{T}=\binom{g_{0}\left(m_{1} d_{1} c_{1}+m_{2} l_{1} c_{1}+m_{2} d_{2} c_{12}\right)}{g_{0} m_{2} d_{2} c_{12}}=\binom{a_{4} c_{1}+a_{5} c_{12}}{a_{5} c_{12}}
$$

Dynamic model of a 2R robot

$$
\begin{array}{r}
\left(a_{1}+2 a_{2} c_{2}\right) \ddot{q}_{1}+\left(a_{2} c_{2}+a_{3}\right) \ddot{q}_{2}-a_{2} s_{2}\left(\dot{q}_{2}^{2}+2 \dot{q}_{1} \dot{q}_{2}\right) \\
+a_{4} c_{1}+a_{5} c_{12}=u_{1} \\
\left(a_{2} c_{2}+a_{3}\right) \ddot{q}_{1}+a_{3} \ddot{q}_{2}+a_{2} s_{2} \dot{q}_{1}^{2}+a_{5} c_{12}=u_{2}
\end{array}
$$

Q1: is it $a_{2}=0$ possible? ...physical interpretation? ...consequences?
Q2: is it $a_{4}=a_{5}=0$ possible as well? ...physical interpretation?
Q3: based on the expressions of the dynamic coefficients a_{1}, a_{2}, a_{3}, check that the robot inertia matrix is always positive definite, and in particular that the diagonal elements are always positive $(\forall q)$
Q4: provide two different matrices S^{\prime} and $S^{\prime \prime}$ for the factorization of the quadratic velocity terms, respectively satisfying and not satisfying the skew-symmetry of $\dot{M}-2 S$

