Robotics 2

Dynamic model of robots: Lagrangian approach

Prof. Alessandro De Luca

Dipartimento di ingegneria Informatica
automatica e Gestionale Antonio Ruberti
SAPIENZA
UNIVERSITÀ DI ROMA

Dynamic model

- provides the relation between generalized forces $u(t)$ acting on the robot

robot motion, i.e., assumed configurations $q(t)$ over time

Direct dynamics

- direct relation
$u(t)=\left(\begin{array}{c}u_{1} \\ \vdots \\ u_{N}\end{array}\right) \longrightarrow q(t)=\left(\begin{array}{c}q_{1} \\ \vdots \\ q_{N}\end{array}\right)$
input for $t \in[0, T] \leadsto q(0), \dot{q}(0)$ initial state at $t=0$
- experimental solution
- apply torques/forces with motors and measure joint variables with encoders (with sampling time T_{c})
- solution by simulation

- use dynamic model and integrate numerically the differential equations (with simulation step $T_{s} \leq T_{c}$)

Inverse dynamics

- inverse relation
$q_{d}(t), \dot{q}_{d}(t), \ddot{q}_{d}(t) \quad$
desired motion for $t \in[0, T]$

required input for $t \in[0, T]$
- experimental solution
- e.g., by repeated motion trials of direct dynamics using $u_{k}(t)$, with iterative learning of nominal torques updated on trial $k+1$ based on the error in $[0, T]$ measured in trial $k: \lim _{k \rightarrow \infty} u_{k}(t) \Rightarrow u_{d}(t)$
- analytic solution

$$
\longleftrightarrow \quad \Phi(q, \dot{q}, \ddot{q})=u
$$

- use dynamic model and compute algebraically the values $u_{d}(t)$ at every time instant t

Approaches to dynamic modeling

Euler-Lagrange method (energy-based approach)

- dynamic equations in symbolic/closed form
- best for study of dynamic properties and analysis of control schemes

Newton-Euler method

 (balance of forces/moments)- dynamic equations in numeric/recursive form
- best for implementation of control schemes (inverse dynamics in real time)
- many other formal methods based on basic principles in mechanics are available for the derivation of the robot dynamic model:
- principle of d'Alembert, of Hamilton, of virtual works, Kane's equations ...

Euler-Lagrange method (energy-based approach)

basic assumption: the N links in motion are considered as rigid bodies
(+ later on, include also concentrated elasticity at the joints)
$q \in \mathbb{R}^{N}$ generalized coordinates (e.g., joint variables, but not only!)

$$
\text { Lagrangian } \underset{\text { kinetic energy - potential energy }}{L(q, \dot{q})=T(q, \dot{q})-U(q)}
$$

- principle of least action of Hamilton
- principle of virtual works

Euler-Lagrange equations

$$
\begin{aligned}
& \text { ange } \quad \frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}-\frac{\partial L}{\partial q_{i}}=u_{i} \quad i=1, \ldots, N \\
& \text { ns } \\
& \text { non-conservative (external or dissipative) } \\
& \text { generalized forces performing work on } q_{i}
\end{aligned}
$$

Dynamics of an actuated pendulum

a first example

Dynamics of an actuated pendulum

(continued)

$U=U_{0}-m g_{0} d \cos \theta \mid$ potential energy

$$
L=T-U=\frac{1}{2} I \dot{\theta}^{2}+m g_{0} d \cos \theta-U_{0}
$$

$$
\frac{\partial L}{\partial \dot{\theta}}=I \dot{\theta}
$$

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{\theta}}=I \ddot{\theta}
$$

$$
\frac{\partial L}{\partial \theta}=-m g_{0} d \sin \theta
$$

$u=n_{r} \tau_{m}-b_{l} \dot{\theta}-n_{r} b_{m} \dot{\theta}_{m}+J_{x}^{T} F_{x}=n_{r} \tau_{m}-\left(b_{l}+b_{m} n_{r}^{2}\right) \dot{\theta}+l \cos \theta F_{x}$

"sum" of
applied or dissipated torques on motor side are multiplied by n_{r} when moved to the link side

Dynamics of an actuated pendulum (cont)

dynamic model in $q=\theta$

$$
I \ddot{\theta}+m g_{0} d \sin \theta=n_{r} \tau_{m}-\left(b_{l}+b_{m} n_{r}^{2}\right) \dot{\theta}+l \cos \theta \cdot F_{x}
$$

dividing by n_{r} and substituting $\theta=\theta_{m} / n_{r}$

$$
\frac{I}{n_{r}^{2}} \ddot{\theta}_{m}+\frac{m}{n_{r}} g_{0} d \sin \frac{\theta_{m}}{n_{r}}=\tau_{m}-\left(\frac{b_{l}}{n_{r}^{2}}+b_{m}\right) \dot{\theta}_{m}+\frac{l}{n_{r}} \cos \frac{\theta_{m}}{n_{r}} \cdot F_{x}
$$

dynamic model in $q=\theta_{m}$

Examples of body inertia matrices

 homogeneous bodies of mass m, with axes of symmetry

Steiner theorem
parallelepiped with sides
a (length/height), b and c (base)
$I_{c}=\left(\begin{array}{lll}I_{x x} & & \\ & I_{y y} & \\ & & I_{z z}\end{array}\right)=\left(\begin{array}{lll}\frac{1}{12} m\left(b^{2}+c^{2}\right) & & \\ & \frac{1}{12} m\left(a^{2}+c^{2}\right) & \\ & & \frac{1}{12} m\left(a^{2}+b^{2}\right)\end{array}\right)$
empty cylinder with length h, and external/internal radius a and b

$$
I_{c}=\left(\begin{array}{ccc}
\frac{1}{2} m\left(a^{2}+b^{2}\right) & & \\
& \frac{1}{12} m\left(3\left(a^{2}+b^{2}\right)+h^{2}\right) & \\
& I_{z z}
\end{array}\right) \quad I_{z z}=I_{y y}
$$

$I_{z Z}^{\prime}=I_{z Z}+m\left(\frac{h}{2}\right)^{2} \quad$ (parallel) axis translation theorem
... its generalization:
 changes on body inertia matrix due to a pure translation r of the reference frame

Rolling inertias

Kinetic energy of a rigid body

Kinetic energy of a rigid body (cont)

$$
\begin{aligned}
& T=\frac{1}{2} \int_{B}\left(v_{c}+S(\omega) r\right)^{T}\left(v_{c}+S(\omega) r\right) d m \\
& =\frac{1}{2} \int_{B} v_{c}^{T} v_{c} d m+\int_{B} v_{c}^{T} S(\omega) r d m+\frac{1}{2} \int_{B} r^{T} S^{T}(\omega) S(\omega) r d m \\
& \downarrow \downarrow \downarrow \downarrow \\
& =\frac{1}{2} m v_{c}^{T} v_{c}=v_{c}^{T} S(\omega) \int_{B} r d m=0 \quad=\frac{1}{2} \int_{B} \omega^{T} S^{T}(r) S(r) \omega d m \\
& \text { translational } \\
& \text { kinetic energy } \\
& \text { (point mass } \\
& \text { at CoM) } \\
& +\underset{\text { (of the whole body) }}{\begin{array}{c}
\text { rotational } \\
\text { kinetic energy }
\end{array}} \xrightarrow{2} \xrightarrow{2} \omega^{T} I_{L_{c}} \omega \\
& =\frac{1}{2} \omega^{T}\left(\int_{B} S^{T}(r) S(r) d m\right) \omega \\
& \text { body inertia matrix } \\
& \text { (around the CoM) }
\end{aligned}
$$

Robot kinetic energy

$$
T=\sum_{i=1}^{N} T_{i} \longmapsto N \text { rigid bodies (+ fixed base) }
$$

$T_{i}=T_{i}(q_{j}, \dot{q}_{j} ; \underbrace{j \leq i}) ص$ open kinematic chain

i-th link (body) of the robot
 of the center of mass angular velocity (CoM) of whole body

Kinetic energy of a robot link

$$
T_{i}=\frac{1}{2} m_{i} v_{c i}^{T} v_{c i}+\frac{1}{2} \omega_{i}^{T} I_{c i} \omega_{i}
$$

$\omega_{i}, I_{c i}$ should be expressed in the same reference frame, but the product $\omega_{i}^{T} I_{c i} \omega_{i}$ is invariant w.r.t. any chosen frame

$$
\begin{aligned}
{ }^{0} \omega_{i}^{T}{ }^{0} I_{c i}(q){ }^{0} \omega_{i} & =\left({ }^{0} R_{i}(q){ }^{i} \omega_{i}\right)^{T}{ }^{0} I_{c i}(q)\left({ }^{0} R_{i}(q){ }^{i} \omega_{i}\right)={ }^{i} \omega_{i}^{T}\left({ }^{0} R_{i}^{T}(q){ }^{0} I_{c i}(q){ }^{0} R_{i}(q)\right){ }^{i} \omega_{i} \\
& ={ }^{i} \omega_{i}^{T} I_{c i}{ }^{i} \omega_{i}
\end{aligned} \quad \Rightarrow \quad{ }^{0} I_{c i}(q)={ }^{0} R_{i}(q){ }^{i} I_{c i}{ }^{0} R_{i}^{T}(q)
$$

in frame $\mathrm{RF}_{\mathrm{ci}}$ attached to (the center of mass of) link i
${ }^{{ }^{i} I_{c i}}=\left(\begin{array}{ccc}\int\left(y^{2}+z^{2}\right) d m & -\int x y d m & -\int x z d m \\ & \int\left(x^{2}+z^{2}\right) d m & -\int y z d m \\ \text { symm } & & \\ & & \\ & \end{array}\right)$

Dependence of T from q and \dot{q}

Final expression of T

$$
T=\frac{1}{2} \sum_{i=1}^{N}\left(m_{i} v_{c i}^{T} v_{c i}+\omega_{i}^{T} I_{c i} \omega_{i}\right)
$$

NOTE 1: in practice, NEVER use this formula (or partial Jacobians) for computing T
\Rightarrow a better method is available...

NOTE 2: the notation $B(q)$ for the robot inertia matrix .. (see past exams!)

$$
\begin{gathered}
=\frac{1}{2} \dot{q}^{T}\left(\sum_{i=1}^{N} m_{i} J_{L i}^{T}(q) J_{L i}(q)+J_{A i}^{T}(q)\left(I_{C i}\right)(q) J_{A i}(q)\right) \dot{q} \\
T=\frac{1}{2} \dot{q}^{T} M(q) \dot{q} \quad \begin{array}{c}
{ }^{0} I_{c i}(q)={ }^{0} R_{i}(q){ }^{i} I_{c i}{ }^{0} R_{i}^{T}(q) \\
\text { is exstant when } \omega_{i} \\
\text { else in } \mathrm{RF}_{\mathrm{ci}}
\end{array} \\
\hline
\end{gathered}
$$

> I used previously

Robot potential energy

assumption: GRAVITY contribution only

$$
U=\sum_{i=1}^{N} U_{i} \Leftarrow N \text { rigid bodies (+ fixed base) }
$$

$$
U_{i}=U_{i}(q_{j} ; \underbrace{-\dot{j} \leq i}) \Leftarrow \text { open kinematic chain }
$$

$$
U_{i}=-m_{i} g^{T} r_{0, c i}
$$

$$
\left\{\begin{array}{cc}
\text { gravity acceleration } & \begin{array}{c}
\text { position of the } \\
\text { vector }
\end{array} \\
\text { center of mass of link } i
\end{array}\right\} \begin{aligned}
& \text { typically } \\
& \text { expressed } \\
& \text { in } \mathrm{RF}_{0}
\end{aligned}
$$

dependence on q

$$
\binom{r_{0, c i}}{1}={ }^{0} A_{1}\left(q_{1}\right){ }^{1} A_{2}\left(q_{2}\right) \cdots{ }^{i-1} A_{i}\left(q_{i}\right)\binom{\left(\begin{array}{c}
i, c i
\end{array}\right.}{1} \quad \begin{gathered}
\text { constant } \\
\text { in } \mathrm{RF}_{\mathrm{i}}
\end{gathered}
$$

NOTE: need to work with homogeneous coordinates

Summarizing ...

Applying Euler-Lagrange equations

(the scalar derivation - see Appendix for vector format)

$$
\begin{gathered}
\qquad L(q, \dot{q})=\frac{1}{2} \sum_{i, j} m_{i j}(q) \dot{q}_{i} \dot{q}_{j}-U(q) \\
\frac{\partial L}{\partial \dot{q}_{k}}=\sum_{j} m_{k j} \dot{q}_{j} \Rightarrow \frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{k}}=\sum_{j} m_{k j} \ddot{q}_{j}+\sum_{i, j} \frac{\partial m_{k j}}{\partial q_{i}} \dot{q}_{i} \dot{q}_{j} \\
\begin{array}{l}
\text { (dependences of } \\
\text { elements on } q \\
\text { are not shown) }
\end{array}
\end{gathered}
$$

LINEAR terms in ACCELERATION \ddot{q}
QUADRATIC terms in VELOCITY \dot{q}
NONLINEAR terms in CONFIGURATION q

k-th dynamic equation ...

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{k}}-\frac{\partial L}{\partial q_{k}}=u_{k}
$$

$$
\sum_{j} m_{k j} \ddot{q}_{j}+\sum_{\substack{\text { exchanging } \\ \text { "mute" indices } i, j}}\left(\frac{\partial m_{k j}}{\partial q_{i}}-\frac{1}{2} \frac{\partial m_{i j}}{\partial q_{k}}\right) \dot{q}_{i} \dot{q}_{j}+\frac{\partial U}{\partial q_{k}}=u_{k}
$$

$$
\cdots+\sum_{i, j} \underbrace{\frac{1}{2}\left(\frac{\partial m_{k j}}{\partial q_{i}}+\frac{\partial m_{k i}}{\partial q_{j}}-\frac{\partial m_{i j}}{\partial q_{k}}\right)}_{c_{k i j}=c_{k j i}} \dot{q}_{i} \dot{q}_{j}+\cdots
$$

of the first kind

... and interpretation of dynamic terms

$m_{k k}(q)=$ inertia at joint k when joint k accelerates $\left(m_{k k}>0!!\right)$
$m_{k j}(q)=$ inertia "seen" at joint k when joint j accelerates $\left(=m_{j k}(q)\right)$
$c_{k i i}(q)=$ coefficient of the centrifugal force at joint k when joint i is moving ($c_{i i i}=0, \forall i$)
$c_{k i j}(q)=$ coefficient of the Coriolis force at joint k when joint i and joint j are both moving $\left(=c_{k j i}(q)\right)$

Robot dynamic model in vector formats

1. $M(q) \ddot{q}+c(q, \dot{q})+g(q)=u$ extracted from T

$$
k \text {-th column }
$$

$$
\text { of matrix } M(q)
$$

$$
\begin{array}{|lc|}
\hline c_{k}(q, \dot{q})=\dot{q}^{T} C_{k}(q) \dot{q} & \begin{array}{l}
k \text {-th component } \\
\text { of vector } c
\end{array} \\
C_{k}(q)=\frac{1}{2}\left(\frac{\partial M_{k}}{\partial q}+\left(\frac{\partial M_{k}}{\partial q}\right)^{T}-\frac{\partial M}{\partial q_{k}}\right) \leftarrow \underset{\text { symmetric }}{\text { matrix! }}
\end{array}
$$

NOTE:

2. $M(q) \ddot{q}+S(q, \dot{q}) \dot{q}+g(q)=u$

 the model is in the form $\Phi(q, \dot{q}, \ddot{q})=u$ as expected$$
s_{k j}(q, \dot{q})=\sum_{i} c_{k i j}(q) \dot{q}_{i} \quad \text { factorization of } c
$$ in general

Dynamic model of a PR robot

$$
\begin{gathered}
y=T_{1}+T_{2} \quad U=\text { constant } \Rightarrow g(q) \equiv 0 \\
\text { (on horizontal plane) }
\end{gathered}
$$

Dynamic model of a PR robot (cont)

where $C_{k}(q)=\frac{1}{2}\left(\frac{\partial M_{k}}{\partial q}+\left(\frac{\partial M_{k}}{\partial q}\right)^{T}-\frac{\partial M}{\partial q_{k}}\right)$

$$
C_{1}(q)=\frac{1}{2}\left(\left(\begin{array}{ll}
0 & 0 \\
0 & -m_{2} d_{c 2} \cos q_{2}
\end{array}\right)+\left(\begin{array}{cc}
0 & 0 \\
0 & -m_{2} d_{c 2} \cos q_{2}
\end{array}\right)-\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)\right)
$$

$$
C_{2}(q)=\frac{1}{2}\binom{\left(\begin{array}{cc}
0 & -m_{2} d_{c 2} \cos q_{2} \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & 0 \\
-m_{2} d_{c 2} \cos q_{2} & 0
\end{array}\right)}{-\left(\begin{array}{cc}
0 & -m_{2} d_{c 2} \cos q_{2} \\
-m_{2} d_{c 2} \cos q_{2} & 0
\end{array}\right)}_{c_{2}(q, \dot{q})=0}=0
$$

$$
\begin{aligned}
& M(q)=\sqrt{m_{1}+m_{2}} \begin{array}{|}
-m_{2} d_{c 2} \sin q_{2} \\
\left.\hline \begin{array}{l}
-m_{2} d_{c 2} \sin q_{2} \\
I_{c 2, z z}+m_{2} d_{c 2}^{2}
\end{array}\right) \quad c(q, \dot{q})=\binom{c_{1}(q, \dot{q})}{c_{2}(q, \dot{q})}
\end{array} \\
& M_{1} \quad M_{2} \\
& c_{k}(q, \dot{q})=\dot{q}^{T} C_{k}(q) \dot{q}
\end{aligned}
$$

Dynamic model of a PR robot (cont)

$$
M(q) \ddot{q}+c(q, \dot{q})=u
$$

$\left(\begin{array}{cc}m_{1}+m_{2} & -m_{2} d_{c 2} \sin q_{2} \\ -m_{2} d_{c 2} \sin q_{2} & I_{c 2, z z}+m_{2} d_{c 2}^{2}\end{array}\right)\binom{\ddot{q}_{1}}{\ddot{q}_{2}}+\binom{-m_{2} d_{c 2} \cos q_{2} \dot{q}_{2}^{2}}{0}=\binom{u_{1}}{u_{2}}$
NOTE: the $m_{N N}$ element (here, for $N=2$) of $M(q)$ is always constant!
Q1: why is variable q_{1} not appearing in $M(q)$? ... this is a general property!
Q2: why are Coriolis terms not present?
Q3: when applying a force u_{1}, does the second joint accelerate? ... always?
Q4: what is the expression of a factorization matrix S ? ... is it unique here?
Q5: what if the PR robot was moving in a vertical plane? ... just add $g(q)$!

A structural property

Matrix $\dot{M}-2 S$ is skew-symmetric

(when using Christoffel symbols to define matrix S)

$$
\left(\begin{array}{c}
\text { Proof }-\dot{m}_{k j}=\sum_{i} \frac{\partial m_{k j}}{\partial q_{i}} \dot{q}_{i} \quad 2 \boldsymbol{s}_{\boldsymbol{k} \boldsymbol{j}}=\sum_{\boldsymbol{i}} 2 \boldsymbol{c}_{\boldsymbol{k} \boldsymbol{i} \boldsymbol{j}} \dot{\boldsymbol{q}}_{\boldsymbol{i}}=\sum_{i}\left(\frac{\partial m_{k j}}{\partial q_{i}}+\frac{\partial m_{k i}}{\partial q_{j}}-\frac{\partial m_{i j}}{\partial q_{k}}\right) \dot{q}_{i} \\
\overrightarrow{m_{k j}-2 s_{k j}=\sum_{i}\left(\frac{\partial m_{i j}}{\partial q_{k}}-\frac{\partial m_{k i}}{\partial q_{j}}\right) \dot{q}_{i}=n_{k j}} \\
n_{j k}=\dot{m}_{j k}-2 s_{j k}=\sum_{i}\left(\frac{\partial m_{i k}}{\partial q_{j}}-\frac{\partial m_{j i}}{\partial q_{k}}\right) \dot{q}_{i}=-n_{k j} \quad \begin{array}{c}
\text { using the } \\
\text { symmetry of } M
\end{array}
\end{array}\right)
$$

Energy conservation

- total robot energy

$$
E=T+U=\frac{1}{2} \dot{q}^{T} M(q) \dot{q}+U(q)
$$

- its evolution over time (using the dynamic model)

$$
\begin{aligned}
\dot{E} & =\dot{q}^{T} M(q) \ddot{q}+\frac{1}{2} \dot{q}^{T} \dot{M}(q) \dot{q}+\frac{\partial U}{\partial q} \dot{q} \\
& =\dot{q}^{T}(u-S(q, \dot{q}) \dot{q}-g(q))+\frac{1}{2} \dot{q}^{T} \dot{M}(q) \dot{q}+\dot{q}^{T} g(q) \\
& =\dot{q}^{T} u+\frac{1}{2} \dot{q}^{T}(\dot{M}(q)-2 S(q, \dot{q})) \dot{q}
\end{aligned}
$$

here, any factorization of vector c by a matrix S can be used

- if $u \equiv 0$, total energy is constant (no dissipation or increase)

$$
\dot{E}=0 \leadsto \dot{q}_{\begin{array}{l}
\text { it is a weaker property than skew-symmetry, } \\
\text { as the external velocity } \dot{q} \text { in the quadratic form } \\
\text { is the same inside the two matrices } \dot{M} \text { and } S
\end{array}}^{\dot{q}^{T}(\dot{M}(q)-2 S(q, \dot{q})) \dot{q}=0, \forall q, \dot{q}} \stackrel{\rightharpoonup}{\begin{array}{c}
\text { in general, the variation } \\
\text { of the total energy is } \\
\text { equal to the work of } \\
\text { non-conservative forces }
\end{array}}
$$

Appendix

dynamic model: alternative vector format derivation

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)^{T}-\left(\frac{\partial L}{\partial q}\right)^{T}=u \quad L=\frac{1}{2} \dot{q}^{T} M(q) \dot{q}-U(q) \\
& \begin{array}{l}
M(q)=\left(\begin{array}{lll}
M_{1}(q) & \cdots & M_{i}(q) \\
)^{T} & =\left(\dot{q}^{T} M(q)\right)^{T}=M(q) \dot{q}
\end{array}\right.
\end{array} \\
& \Rightarrow \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)^{T}=M(q) \ddot{q}+\dot{M}(q) \dot{q}=M(q) \ddot{q}+\sum_{i=1}^{N}\left(\frac{\partial M_{i}}{\partial q}\right) \dot{q}_{i} \dot{q} \\
& \left(\frac{\partial L}{\partial q}\right)^{T}=\left(\frac{1}{2} \dot{q}^{T}\left(\sum_{i=1}^{N} \frac{\partial M_{i}(q)}{\partial q} e_{i}^{T}\right) \dot{q}-\frac{\partial U(q)}{\partial q}\right)^{T}=\frac{1}{2} \sum_{i=1}^{N}\left(\frac{\partial M_{i}}{\partial q}\right)^{T} \dot{q}_{i} \dot{q}-\left(\frac{\partial U}{\partial q}\right)^{T} \\
& \left(\frac{\partial L}{\partial \dot{q}}\right)^{T}=\left(\dot{q}^{T} M(q)\right)^{T}=M(q) \dot{q} \quad \quad \begin{array}{c}
i=1 \\
\text { dyadic expansion }
\end{array} \\
& M(q)=\left(\begin{array}{lllll}
M_{1}(q) & \cdots & M_{i}(q) & \cdots & M_{N}(q)
\end{array}\right)=\sum_{i=1}^{N} M_{i}(q) e_{i}^{T_{i}} \quad \begin{array}{|}
i-\text { th } \\
\text { position }
\end{array} \\
& \begin{array}{l}
\text { special definition } \\
\text { of } S \text { matrix giving }
\end{array} \\
& \Rightarrow M(q) \ddot{q}+\left(\sum_{i=1}^{N}\left(\frac{\partial M_{i}}{\partial q}-\frac{1}{2}\left(\frac{\partial M_{i}}{\partial q}\right)^{T}\right) \dot{q}_{i}\right) \dot{q}+\left(\frac{\partial U}{\partial q}\right)^{T}=u \\
& \text { to } \dot{M}-2 S
\end{aligned}
$$

