

Robotics 2

Robots with kinematic redundancy Part 1: Fundamentals

Prof. Alessandro De Luca

Dipartimento di Ingegneria Informatica Automatica e Gestionale Antonio Ruberti

Redundant robots

• direct kinematics of the task r = f(q)

joint space (dim Q = N)

task space (dim R = M)

- a robot is (kinematically) redundant for the task if N > M(more degrees of freedom than strictly needed for executing the task)
- r may contain the position and/or the orientation of the end-effector or, more in general, be any parameterization of the task (even not in the Cartesian workspace)
- "redundancy" of a robot is thus a relative concept, i.e., it holds with respect to a given task

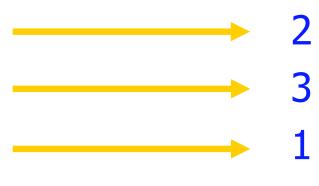
Some E-E tasks and their dimensions

- position in the plane
- position in 3D space
- orientation in the plane
- pointing in 3D space
- position and orientation in 3D space —>

a planar robot with N = 3 joints is redundant for the task of positioning its E-E in the plane (M = 2), but NOT for the task of positioning AND orienting the E-E in the plane (M = 3)

2

6



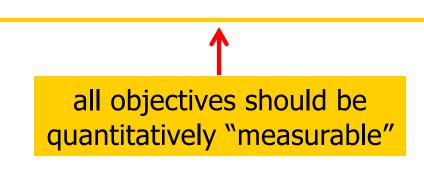
dimension M

- 6R robot mounted on a linear track/rail
 - 7 dofs for positioning and orienting its end-effector in 3D space
- 6-dof robot used for arc welding tasks
 - task does not prescribe the final roll angle of the welding gun
- dexterous robotic hands
- multiple cooperating manipulators
- manipulator on a mobile base
- humanoid robots, team of mobile robots ...
- "kinematic" redundancy is not the only type...
 - redundancy of components (actuators, sensors)

redundancy in the control/supervision architecture
 Robotics 2

Uses of robot redundancy

- avoid collision with obstacles (in Cartesian space) ...
- ... or kinematic singularities (in joint space)
- stay within the admissible joint ranges
- increase manipulability in specified directions
- uniformly distribute/limit joint velocities and/or accelerations
- minimize energy consumption or needed motion torques
- optimize execution time
- increase dependability with respect to faults



6

DLR robots: LWR-III and Justin

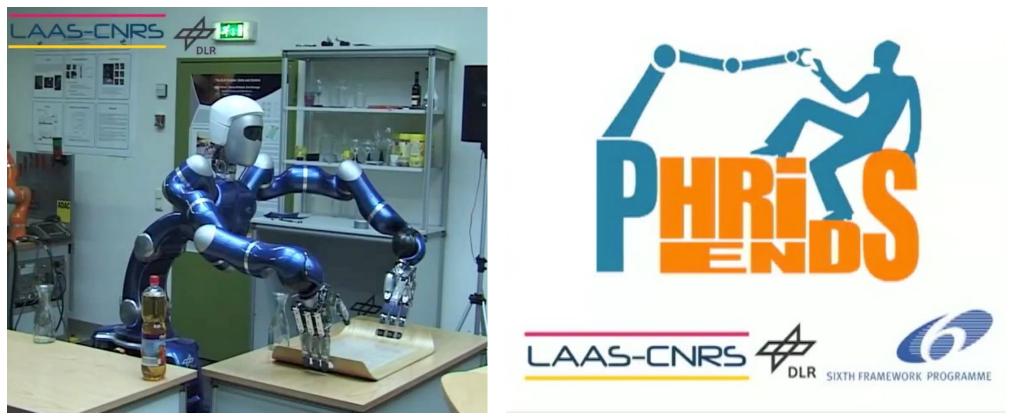
7R LWR-III lightweight manipulator: elastic joints (HD), joint torque sensing, 13.5 kg weight = payload

Justin two-arm upper-body humanoid: 43R actuated = two arms (2×7) + torso (3*) + head (2) + two hands (2×12), 45 kg weight

Robotics 2

Justin carrying a trailer

video



motion planning for DLR Justin robot in the configuration space, avoiding Cartesian obstacles and using robot redundancy

Dual-arm redundancy

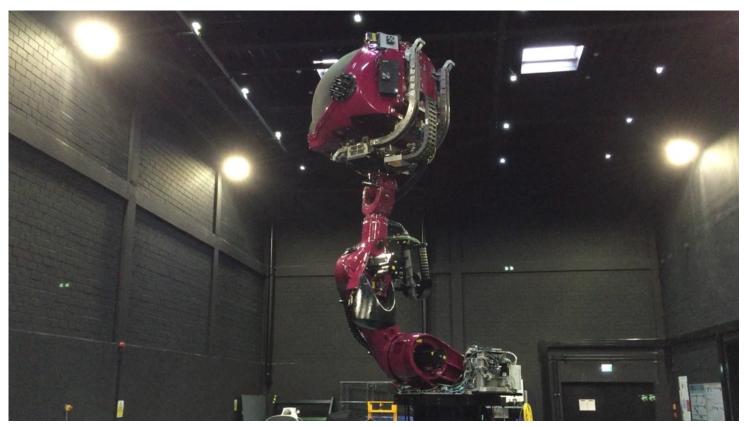
video

DIS, Uni Napoli

two 6R Comau robots, one mounted on a linear track (+1P) coordinated 6D motion using the null-space of the right-side robot (N - M = 1)

Motion cueing from redundancy

video

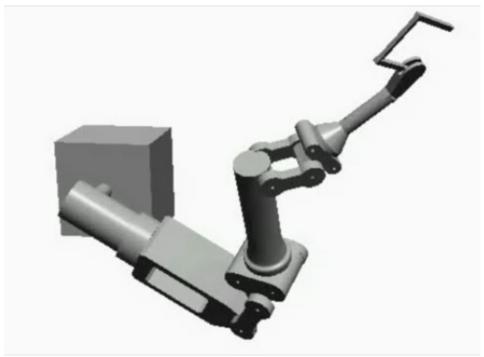


Max Planck Institute for Biological Cybernetics, Tübingen

a 6R KUKA KR500 mounted on a linear track (+1P) with a sliding cabin (+1R), used as a dynamic emulation platform for human perception (N - M = 2)Robotics 2

Self-motion

video

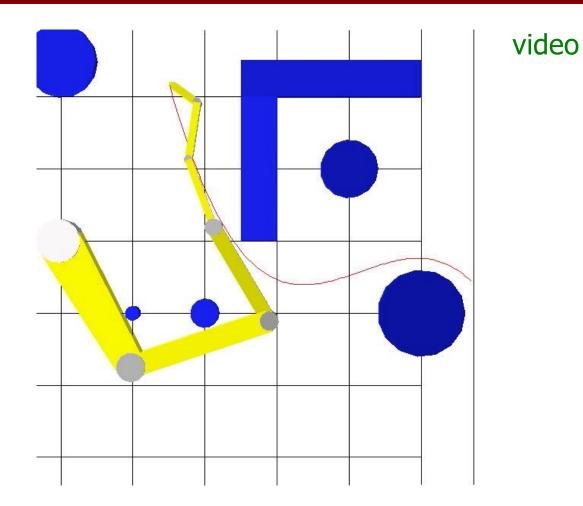


8R Dexter: self-motion with constant 6D pose of E-E (N - M = 2)

Nakamura's Lab, Uni Tokyo

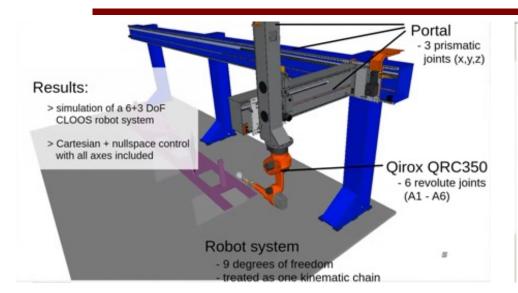
6R robot with spherical shoulder in compliant tasks for the Cartesian E-E position (N - M = 3)

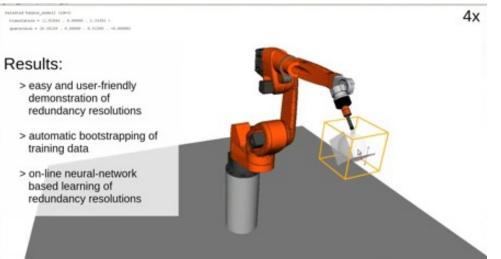
Obstacle avoidance

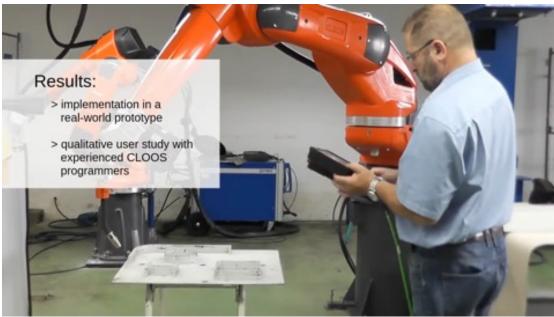


6R planar arm moving on a given geometric path for the E-E (N - M = 4)

An Echord++ industrial experiment





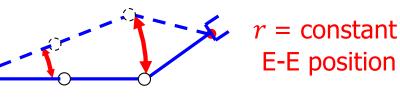


3 videos

Inverse kinematics problem

- find q(t) that realizes the task: f(q(t)) = r(t) (at all times t)
- infinite solutions exist when the robot is redundant (even for r(t) = r = constant)

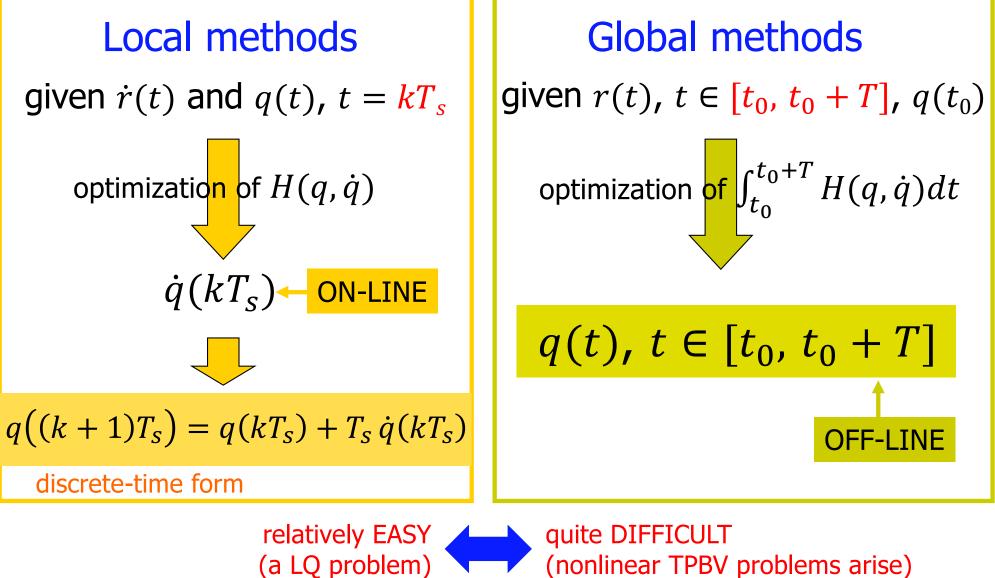
$$N = 3 > 2 = M$$



- the robot arm may have "internal displacements" that are unobservable at the task level (e.g., not contributing to E-E motion)
 - these joint displacements can be chosen so as to improve/optimize in some way the behavior of the robotic system
- self-motion: an arm reconfiguration in the joint space that does not change/affect the value of the task variables r
- solutions are mainly sought at differential level (e.g., velocity)

Redundancy resolution

via optimization of an objective function



Robotics 2

Local resolution methods

three classes of methods for solving $\dot{r} = J(q)\dot{q}$

- 1 Jacobian-based methods (here, analytic Jacobian in general!) among the infinite solutions, one is chosen, e.g., that minimizes a suitable (possibly weighted) norm
- 2 null-space methods

a term is added to the previous solution so as not to affect execution of the task trajectory, i.e., belonging to the null-space $\mathcal{N}(J(q))$

3 task augmentation methods

redundancy is reduced/eliminated by adding $S \le N - M$ further auxiliary tasks (when S = N - M, the problem has been "squared")

$$r = f(q) \implies \dot{r} = J(q)\dot{q}$$

we look for a solution to $\dot{r} = J(q)\dot{q}$ in the form $J = \bigcup_{N} M \qquad \dot{q} = K(q)\dot{r} \qquad K = \bigcup_{M} N$ minimum requirement for K: J(q)K(q)J(q) = J(q)($\Longrightarrow K$ = generalized inverse of J)

 $\forall \dot{r} \in \mathcal{R}(J(q)) \implies J(q)[K(q)\dot{r}] = J(q)K(q)J(q)\dot{q} = J(q)\dot{q} = \dot{r}$

example: if $J = [J_a \ J_b]$, det $(J_a) \neq 0$, one such generalized inverse of J is $K_r = \begin{pmatrix} J_a^{-1} \\ 0 \end{pmatrix}$ (actually, this is a stronger right-inverse)

Pseudoinverse

$$\dot{q} = J^{\#}(q)\dot{r}$$
 ... a very common choice: $K = J^{\#}$

- $J^{\#}$ always exists, and is the unique matrix satisfying $J J^{\#} J = J \qquad J^{\#} J J^{\#} = J^{\#}$ $(J J^{\#})^{T} = J J^{\#} \qquad (J^{\#} J)^{T} = J^{\#} J$
- if J is full (row) rank, $J^{\#} = J^{T}(JJ^{T})^{-1}$; else, it is computed numerically using the SVD (Singular Value Decomposition) of J (pinv of Matlab)
- the pseudo-inverse joint velocity is the only that minimizes the norm $\|\dot{q}\|^2 = \dot{q}^T \dot{q}$ among all joint velocities that minimize the task error norm $\|\dot{r} - J(q)\dot{q}\|^2$
- if the task is feasible ($\dot{r} \in \mathcal{R}(J(q))$), there will be no task error *Robotics 2*

Weighted pseudoinverse

$$\dot{q} = J_W^{\#}(q)\dot{r}$$
 another choice: $K = J_W^{\#}$

• the solution \dot{q} minimizes the weighted norm

 $\|\dot{q}\|_{W}^{2} = \dot{q}^{T}W \dot{q} \qquad \qquad W > 0, \text{ symmetric} \\ \text{(often diagonal)}$

- if J is full (row) rank, J[#]_W = W⁻¹J^T(JW⁻¹J^T)⁻¹
 large weight W_i ⇒ small q_i
 - larger weights for proximity joints (carrying/moving more "mass")
 - weights chosen proportionally to the inverse of the joint ranges
- it is NOT a "pseudoinverse" (4th relation does not hold), but it shares similar properties

• the SVD routine of Matlab applied to J provides two orthonormal matrices $U_{M \times M}$ and $V_{N \times N}$, and a matrix $\Sigma_{M \times N}$ of the form

$$\Sigma = \begin{pmatrix} \sigma_1 & & \\ & \sigma_2 & \\ & & \ddots & \\ & & & \sigma_M \end{pmatrix} \quad \begin{array}{c} \sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_\rho > 0 \\ \sigma_{\rho+1} = \cdots = \sigma_M = 0 \\ \text{singular values of } J \end{array}$$

where $\rho = \operatorname{rank}(J) \leq M$, so that their product is

$$J = U\Sigma V^T$$

- the columns of U are eigenvectors of J J^T (associated to its nonnegative eigenvalues σ_i²), the columns of V are eigenvectors of J^TJ
- the last $N \rho$ columns of V are a basis for the null space of J

$$Jv_i = \sigma_i u_i \quad (i = 1, \cdots, \rho)$$

$$Jv_i = 0$$
 (i = $\rho + 1, \dots, N$)

Computation of pseudoinverses

show that the pseudoinverse of J is equal to

$$J = U\Sigma V^{T} \Rightarrow J^{\#} = V\Sigma^{\#}U^{T} \Sigma^{\#} = \begin{pmatrix} - & \ddots & \\ & \frac{1}{\sigma_{\rho}} & \\ & & 0_{(M-\rho)\times(M-\rho)} \\ \hline & & 0_{(N-M)\times M} \end{pmatrix}$$
for any rank ρ of J

 $\left(\frac{1}{\sigma_1}\right)$

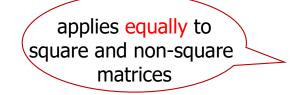
 show that matrix J[#]_W appears when solving the constrained linearquadratic (LQ) optimization problem (with W > 0, symmetric, and assuming J of full rank)

$$\min \frac{1}{2} \|\dot{q}\|_{W}^{2}$$
 s.t. $J(q)\dot{q} - \dot{r} = 0$

and that the pseudoinverse is a particular case for W = I

 show that a weighted pseudoinverse of J can be computed by SVD/pinv as

$$J_{aux} = JW^{-1/2}$$
 $J_W^{\#} = W^{-1/2} \operatorname{pinv}(J_{aux})$



Singularity robustness Damped Least Squares (DLS)

unconstrained minimization of a **suitable** objective function

$$\min_{\dot{q}} H(\dot{q}) = \frac{\mu^2}{2} \|\dot{q}\|^2 + \frac{1}{2} \|\dot{r} - J\dot{q}\|^2$$

compromise between large joint velocity and task accuracy

SOLUTION
$$\dot{q} = J_{DLS}(q)\dot{r} = J^T (J J^T + \mu^2 I_M)^{-1} \dot{r}$$

- induces a robust behavior when crossing singularities, but in its basic version gives always a task error $\dot{e} = \mu^2 (J J^T + \mu^2 I_M)^{-1} \dot{r}$ (as for N = M)
 - *J*_{DLS} is not a generalized inverse *K*

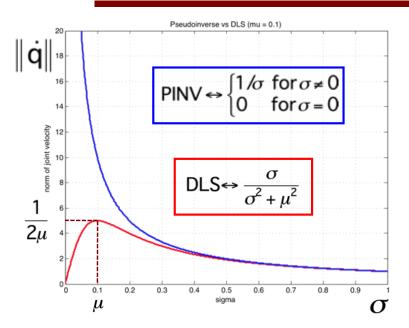
• using SVD:
$$J = U \Sigma V^T \Rightarrow J_{DLS} = V \Sigma_{DLS} U^T$$
, $\Sigma_{DLS} =$

$$= \begin{pmatrix} diag\left\{\frac{\sigma_i}{\sigma_i^2 + \mu^2}\right\} \\ \frac{\rho \times \rho}{0_{(N-M) \times \rho}} & 0_{(M-\rho) \times (M-\rho)} \\ \hline \end{pmatrix}$$

- choice of a variable damping factor $\mu^2(q) \ge 0$, function of the minimum singular value $\sigma_{\rho}(q) > 0$ of $J \cong$ a measure of distance from a singularity (if $\rho = M$) or of further loss of rank (when $\rho < M$)
- numerical filtering: introduces damping only/mostly in non-feasible directions for the task (see Maciejewski and Klein, *J of Rob Syst*, 1988)

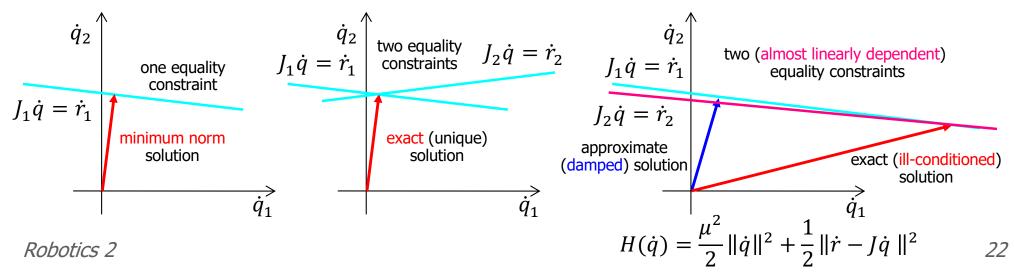
Robotics 2

Behavior of DLS solution



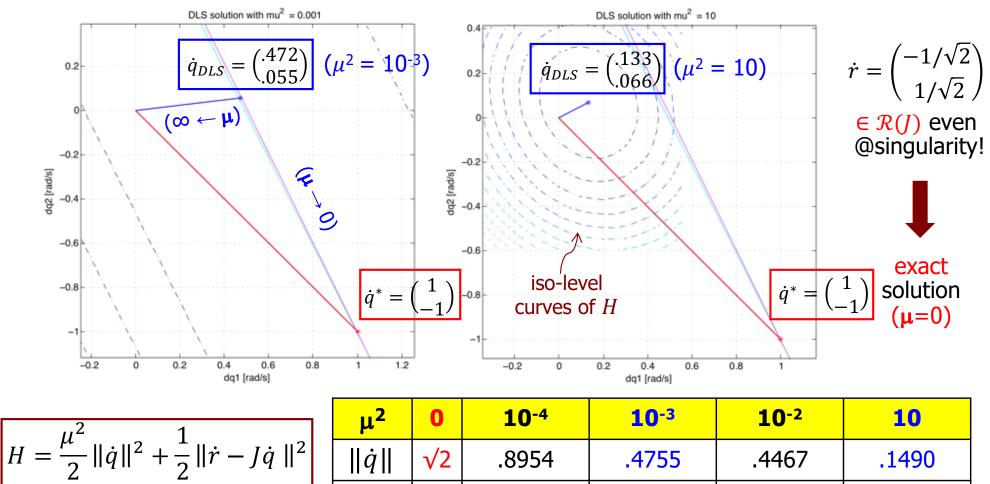
- a. comparison of joint velocity norm with PINV (pseudoinverse) or DLS solutions
- in a task direction along a vector ${\it u}$ of U, when the associated singular value $\sigma \rightarrow 0$
- **PINV** goes to infinity (and then is 0 at $\sigma = 0$)
- DLS peaks a value of $1/2\mu$ at $\sigma = \mu$ (and then smoothly goes to 0...)

b. graphical interpretation of "damping" effect (here M = N = 2, for simplicity)



Numerical example of DLS solution

planar 2R arm, unit links, close to (stretched) singular configuration $q_1 = 45^\circ$, $q_2 = 1.5^\circ$)



6.6·10⁻³

7.7.10-5

1.4·10⁻²

 $2.2 \cdot 10^{-4}$

 $1.6 \cdot 10^{-2}$

1.2.10-3

||ė||

 H_{min}

0

0

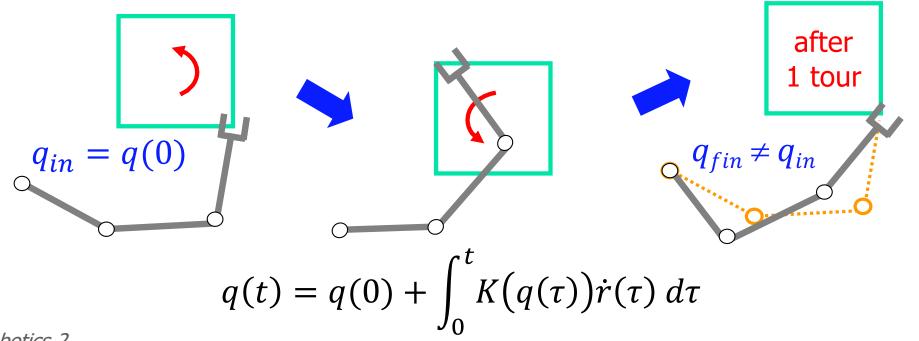
Robotics 2

.6668

3.4·10⁻¹

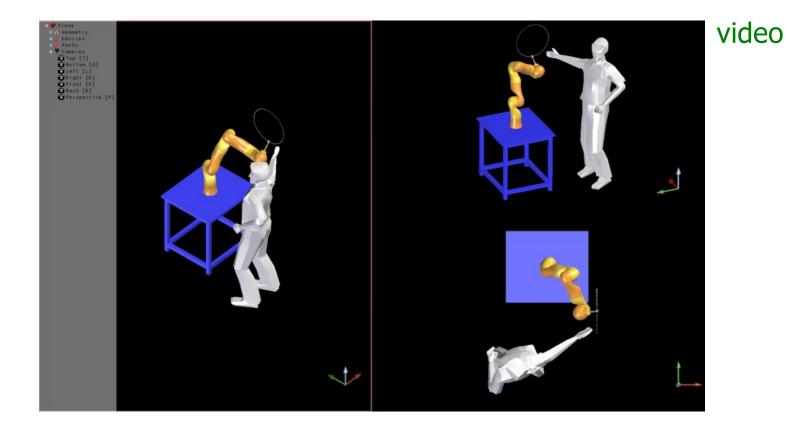
Limits of Jacobian-based methods

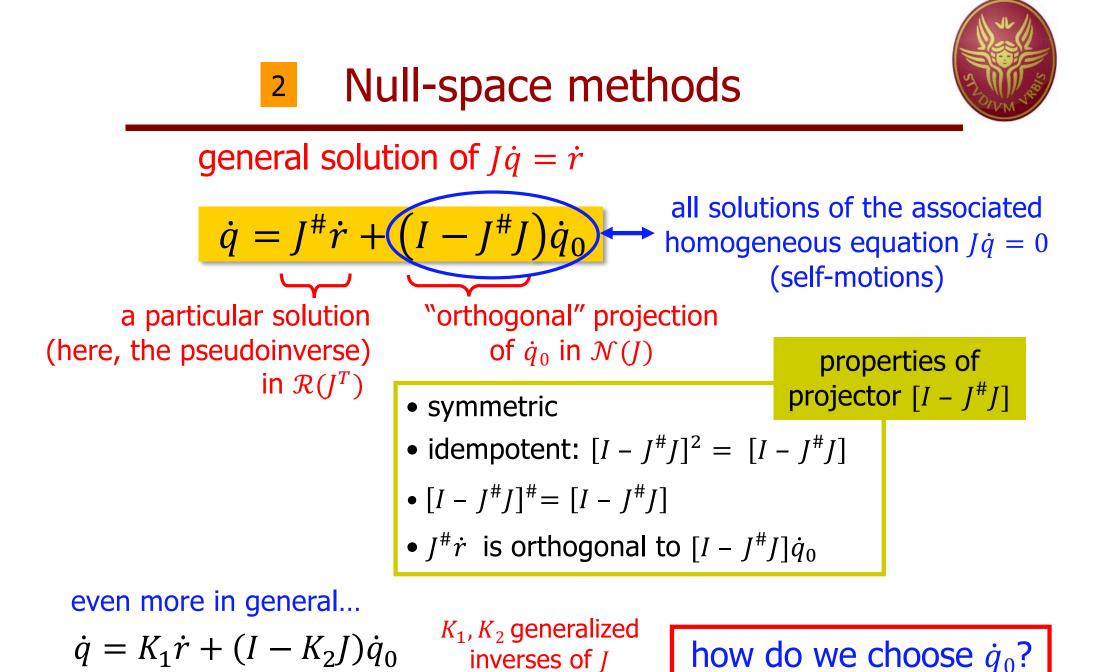
- no guarantee that singularities are globally avoided during task execution
 - despite joint velocities are kept to a minimum, this is only a local property and "avalanche" phenomena may occur
- typically lead to non-repeatable motion in the joint space
 - cyclic motions in task space do not map to cyclic motions in joint space



Drift with Jacobian pseudoinverse

- a 7R KUKA LWR4 robot moves in the vicinity of a human operator
- we command a cyclic Cartesian path (only in position, M = 3), to be repeated several times using the pseudoinverse solution
- (unexpected) collision of a link occurs during the third cycle ...



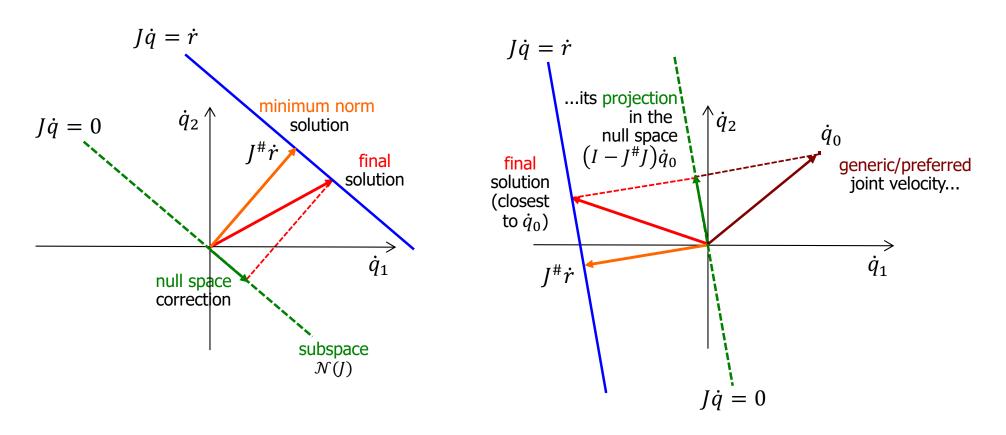


... but with less nice properties! $(JK_i J = J)$

Robotics 2

Geometric view on Jacobian null space

in the space of velocity commands



a correction is added to the original pseudoinverse (minimum norm) solution i) which is in the null space of the Jacobian ii) and possibly satisfies additional criteria or objectives

Robotics 2

Linear-Quadratic Optimization generalities

$$\min_{x} H(x) = \frac{1}{2} (x - x_0)^T W(x - x_0)$$

$$M \times N$$
s.t. $J x = y$

 $x \in \mathbb{R}^{N}$ W > 0 (symmetric) $y \in \mathbb{R}^{M}$ $rank(J) = \rho(J) = M$

 $L(x, \lambda) = H(x) + \lambda^T (Jx - y) \leftarrow \text{Lagrangian (with multipliers } \lambda)$

necessary
conditions
$$\nabla_{x}L = \left(\frac{\partial L}{\partial x}\right)^{T} = W(x - x_{0}) + J^{T}\lambda = 0 \implies x = x_{0} - W^{-1}J^{T}\lambda$$
$$\nabla_{\lambda}L = \left(\frac{\partial L}{\partial \lambda}\right)^{T} = Jx - y = 0 \implies Jx_{0} - JW^{-1}J^{T}\lambda - y = 0$$

sufficient
condition
for a minimum
$$\nabla_{x}^{2}L = W > 0$$
$$\downarrow$$
$$\lambda = (JW^{-1}J^{T})^{-1}(Jx_{0} - y) \implies x = x_{0} + W^{-1}J^{T}(JW^{-1}J^{T})^{-1}(y - Jx_{0})$$
$$M \times M \text{ invertible}$$

Linear-Quadratic Optimization

application to robot redundancy resolution

PROBLEM

$$\min_{\dot{q}} H(\dot{q}) = \frac{1}{2} (\dot{q} - \dot{q}_0)^T W(\dot{q} - \dot{q}_0)$$

s.t. $J\dot{q} = \dot{r}$

 \dot{q}_0 is a "privileged" joint velocity

SOLUTION
$$\dot{q} = \dot{q}_0 + W^{-1}J^T(JW^{-1}J^T)^{-1}(\dot{r} - J\dot{q}_0)$$

 $J_W^{\#}$
 $\dot{q} = J_W^{\#}\dot{r} + (I - J_W^{\#}J)\dot{q}_0$
minimum weighted norm
solution (for $\dot{q}_0 = 0$) "projection" matrix in
the null-space $\mathcal{N}(J)$

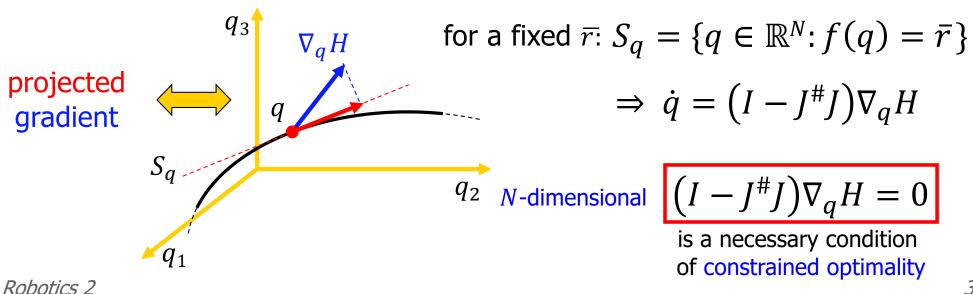
Robotics 2

Projected Gradient (PG)

$$\dot{q} = J^{\#}\dot{r} + \left(I - J^{\#}J\right)\dot{q}_0$$

the choice $\dot{q}_0 = \nabla_q H(q) \rightarrow$ differentiable objective function realizes one step of a constrained optimization algorithm

while executing the time-varying task r(t) the robot tries to increase the value of H(q)



manipulability (maximize the "distance" from singularities)

$$H_{\rm man}(q) = \sqrt{\det[J(q)J^T(q)]}$$

joint range (minimize the "distance" from the mid points of the joint ranges)

$$q_{i} \in [q_{m,i}, q_{M,i}]$$

$$\overline{q_{i}} = \frac{q_{M,i} + q_{m,i}}{2}$$

$$H_{\text{range}}(q) = \frac{1}{2N} \sum_{i=1}^{N} \left(\frac{q_{i} - \overline{q}_{i}}{q_{M,i} - q_{m,i}} \right)^{2}$$

$$\dot{q}_{0} = -\nabla_{q} H(q)$$

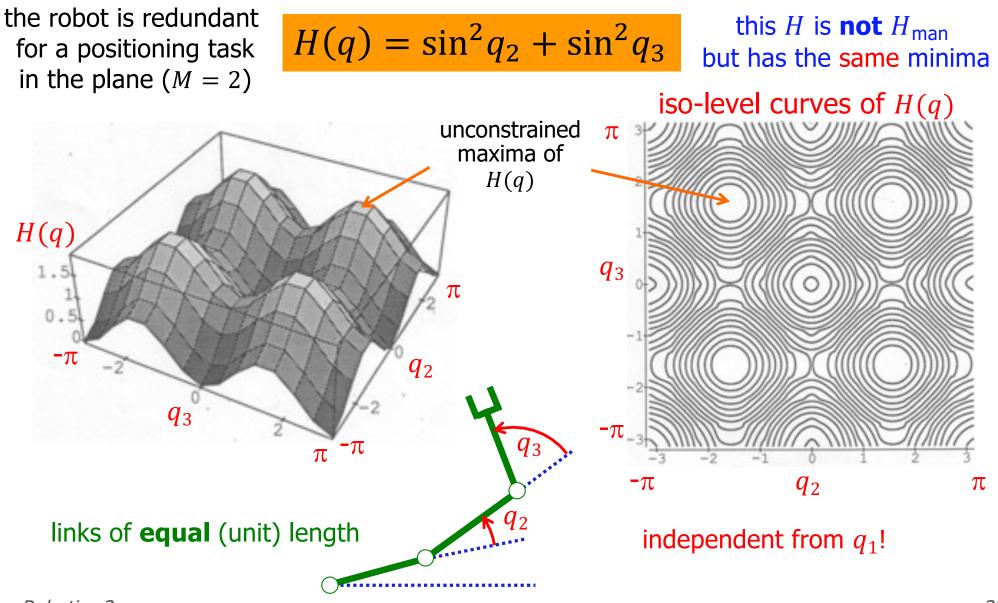
obstacle avoidance (maximize the minimum distance to Cartesian obstacles)

also known as "clearance" Ho

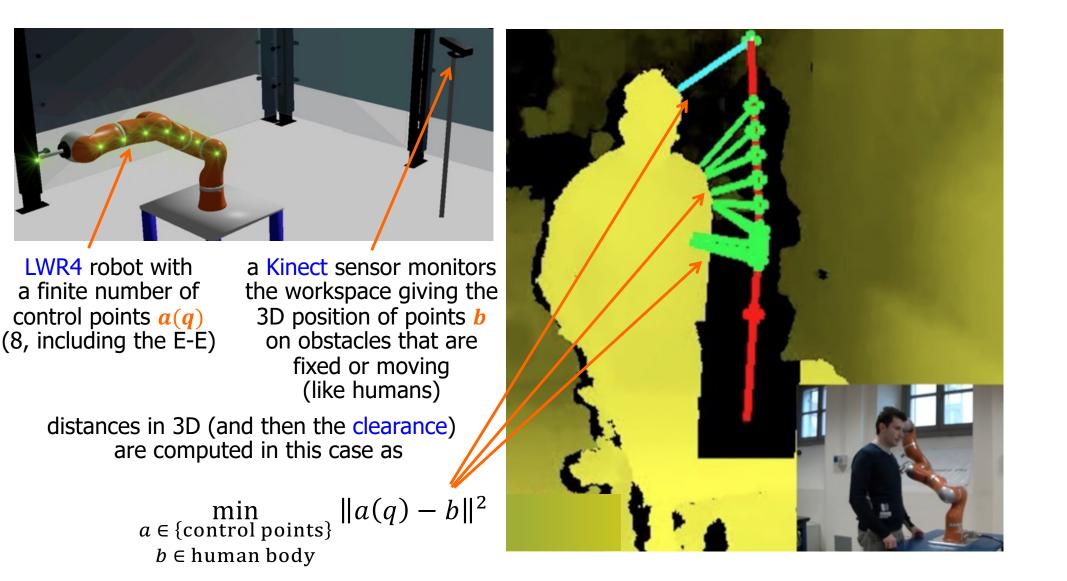
$$bs(q) = \min_{\substack{a \in \text{robot} \\ b \in \text{obstacles}}} \|a(q) - b\|^2$$

potential difficulties due to non-differentiability (this is a max-min problem)

Singularities of planar 3R arm



Minimum distance computation



- the projection matrix (I J[#]J) has dimension N×N, but only rank N M
 (if J is full rank M), with some waste of information
- actual (efficient) evaluation of the solution

$$\dot{q} = J^{\#}\dot{r} + (I - J^{\#}J)\dot{q}_{0} = \dot{q}_{0} + J^{\#}(\dot{r} - J\dot{q}_{0})$$

but the pseudoinverse is needed anyway, and this is computationally intensive (SVD in the general case)

- in principle, the additional complexity of a redundancy resolution method should depend only on the redundancy degree N-M
- a constrained optimization method is available, which is known to be more efficient than the projected gradient (PG) —at least when the Jacobian has full rank ...

• if $\rho(J(q)) = M$, there exists a decomposition of the set of joints (possibly, after a reordering) $M \times M$

$$q = \begin{pmatrix} q_a \\ q_b \end{pmatrix} M$$
 such that $J_a(q) = \frac{\partial f}{\partial q_a}$ is nonsingular

• from the implicit function theorem, there exists an inverse function g

$$f(q_a, q_b) = r \implies q_a = g(r, q_b)$$

with $\frac{\partial g}{\partial q_b} = -\left(\frac{\partial f}{\partial q_a}\right)^{-1} \frac{\partial f}{\partial q_b} = -J_a^{-1}(q)J_b(q)$

- the N M variables q_b can be selected independently (e.g., they are used for optimizing an objective function H(q), "reduced" via the use of g to a function of q_b only)
- $q_a = g(r, q_b)$ is then chosen so as to correctly execute the task

Reduced Gradient (RG)

- $H(q) = H(q_a, q_b) = H(g(r, q_b), q_b) = H'(q_b)$, with r at current value
- the Reduced Gradient (w.r.t. q_b only, but still keeping the effects of this choice into account) is

$$\nabla_{q_b} H' = \begin{bmatrix} -(J_a^{-1}J_b)^T & I_{N-M} \end{bmatrix} \nabla_q H$$
$$(\neq \nabla_{q_b} H \text{ only!!})$$

$$\nabla_{q_b} H' = 0$$

is a "compact" (i.e., *N* – *M* dimensional) necessary condition of constrained optimality

algorithm

$$\dot{q}_{b} = \nabla_{q_{b}} H' \qquad \text{step in the gradient direction of the reduced } (N - M) \text{-dim space}$$

$$J_{a}\dot{q}_{a} + J_{b}\dot{q}_{b} = \dot{r} \qquad \text{satisfaction of the } M \text{-dim task constraints}$$

$$\dot{q}_{a} = J_{a}^{-1}(\dot{r} - J_{b}\dot{q}_{b})$$

Projected Gradient (PG)

$$\dot{q} = J^{\#}\dot{r} + (I - J^{\#}J)\nabla_{q}H$$

Reduced Gradient (RG)

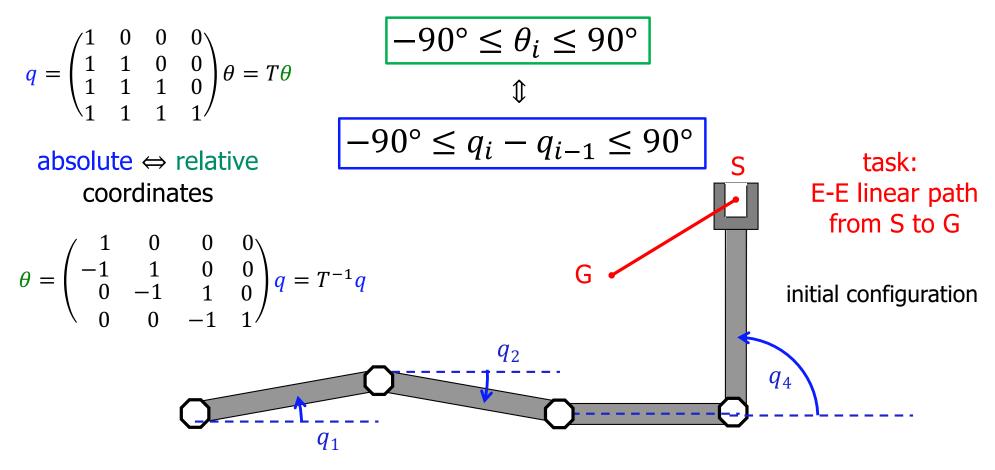
$$\dot{q} = \begin{pmatrix} \dot{q}_a \\ \dot{q}_b \end{pmatrix} = \begin{pmatrix} J_a^{-1} \\ 0 \end{pmatrix} \dot{r} + \begin{pmatrix} -J_a^{-1}J_b \\ I \end{pmatrix} (-(J_a^{-1}J_b)^T \quad I) \nabla_q H$$

- RG is analytically simpler and numerically faster than PG, but requires the search for a non-singular minor (*J_a*) of the robot Jacobian
- if $r = \cos k N M = 1 \Rightarrow$ same (unique) direction for \dot{q} , but RG has automatically a larger optimization step size
- else ⇒ RG and PG methods provide always different evolutions

Analytic comparison PPR robot

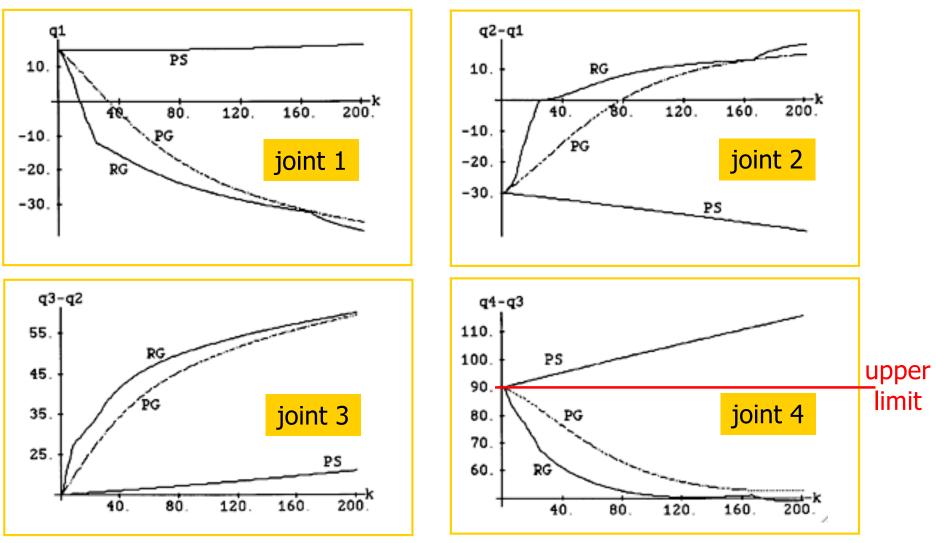
Robotics 2

Joint range limits



numerical comparison among pseudoinverse (PS), projected gradient (PG), and reduced gradient (RG) methods

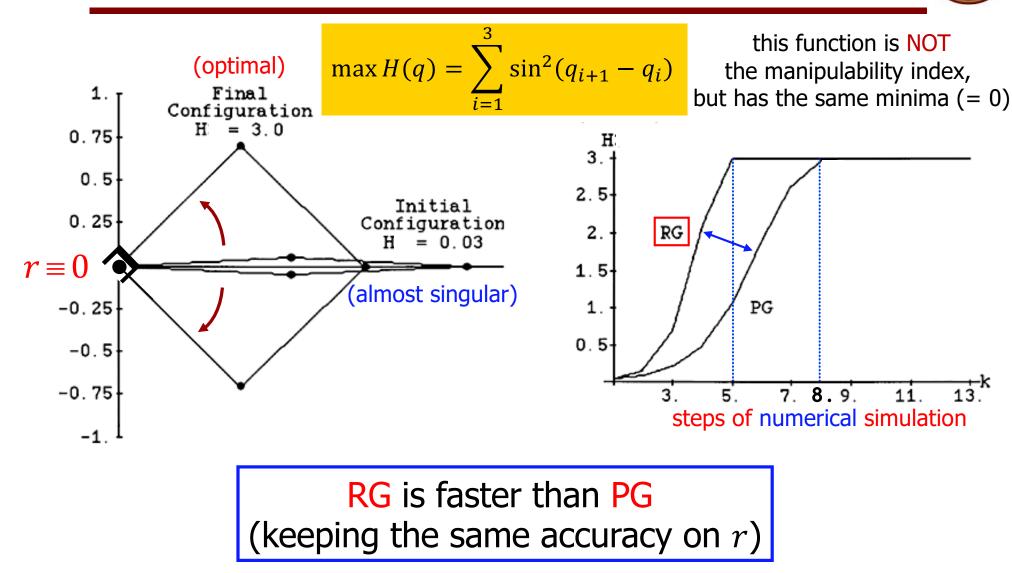
Numerical results minimizing distance from mid joint range



steps of numerical simulation

Numerical results

self-motion for escaping singularities



an auxiliary task is added (task augmentation)

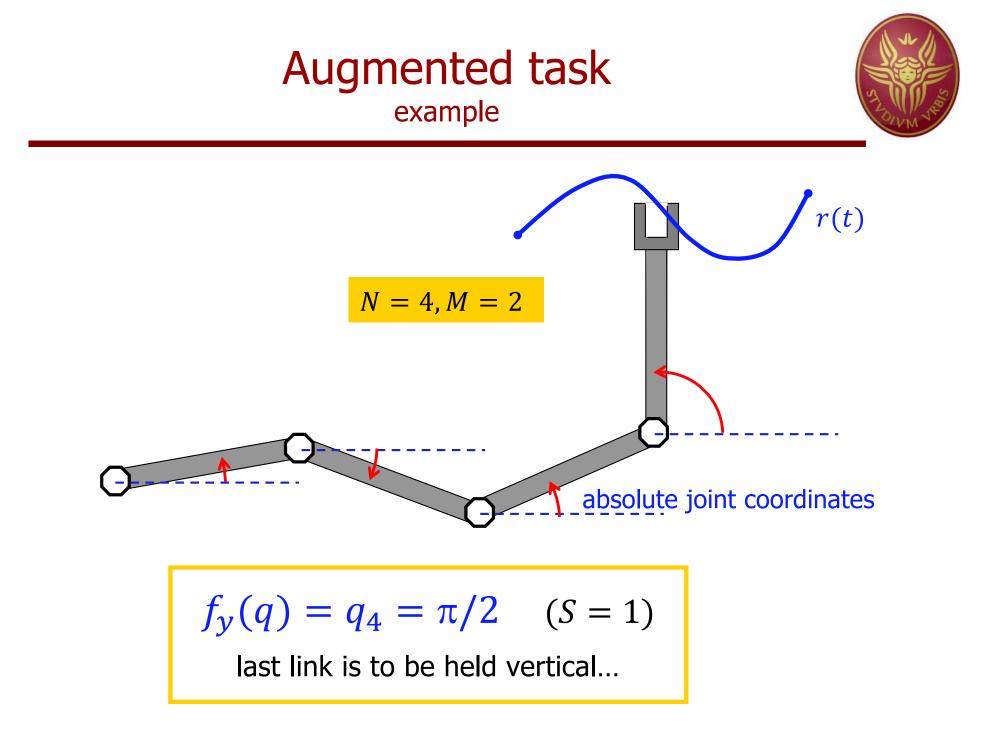
$$S \downarrow f_y(q) = y \quad S \leq N - M$$

corresponding to some desirable feature for the solution

a solution is chosen still in the form of a generalized inverse

$$\dot{q} = K_A(q)\dot{r}_A$$

or by adding a term in the null space of the augmented Jacobian matrix J_A



- advantage: better shaping of the inverse kinematic solution
- disadvantage: algorithmic singularities are introduced when

$$\rho(J) = M \quad \rho(J_y) = S \quad \text{but} \quad \rho(J_A) < M + S$$

to avoid this, it should be always

$$\mathcal{R}(J^T) \cap \mathcal{R}(J^T_{\mathcal{Y}}) = \emptyset$$

difficult to be obtained globally!

rows of J AND rows of J_y are all together linearly independent

• square J_A : in the absence of algorithmic singularities, we can choose

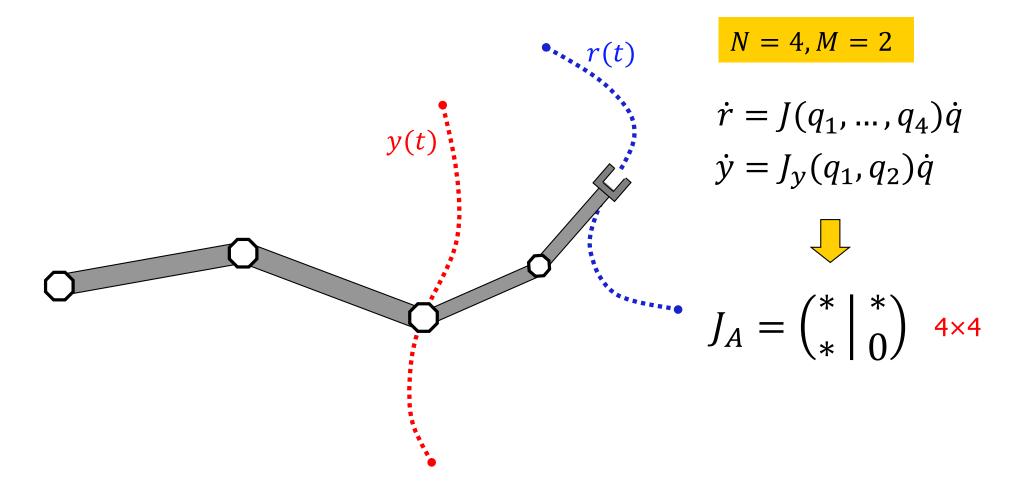
$$\dot{q} = J_A^{-1}(q)\dot{r}_A$$

- the scheme is then repeatable
 - provided no singularities are encountered during a complete task cycle*
- when the N M conditions $f_y(q) = 0$ correspond to necessary (and sufficient) conditions for constrained optimality of a given objective function H(q) (see RG method, slide #36), this scheme guarantees that constrained optimality is locally preserved during task execution
- in the vicinity of algorithmic singularities, for the simultaneous execution of the original task and the auxiliary task(s), one can use the DLS method; however, both tasks will be affected by errors

^{*} there exists an unexpected phenomenon in some 3R manipulators having "generic" kinematics: the robot may sometimes perform a pose change after a full cycle, even if no singularity has been encountered during motion (see J. Burdick, *Mech. Mach. Theory*, 30(1), 1995)

Extended Jacobian example

MACRO-MICRO manipulator



Task Priority

if the original (primary) task $\dot{r}_1 = J_1(q)\dot{q}$ has higher priority than the auxiliary (secondary) task $\dot{r}_2 = J_2(q)\dot{q}$

we first address the task with highest priority

 $\dot{q} = J_1^{\#} \dot{r}_1 + (I - J_1^{\#} J_1) v_1$

• and then choose v_1 so as to satisfy, if possible, also the secondary (lower priority) task

$$\dot{r}_2 = J_2 \dot{q} = J_2 J_1^{\#} \dot{r}_1 + J_2 (I - J_1^{\#} J_1) v_1 = J_2 J_1^{\#} \dot{r}_1 + J_2 P_1 v_1$$

the general solution for v_1 takes the usual form

$$v_1 = (J_2 P_1)^{\#} (\dot{r}_2 - J_2 J_1^{\#} \dot{r}_1) + (I - (J_2 P_1)^{\#} (J_2 P_1)) v_2$$

 v_2 is available for the execution of further tasks of lower (ordered) priorities

Task Priority (continue)

48

- substituting the expression of v_1 in \dot{q}

$$\dot{q} = J_1^{\#} \dot{r}_1 + (P_1(J_2P_1)^{\#} (\dot{r}_2 - J_2 J_1^{\#} \dot{r}_1) + P_1 (I - (J_2P_1)^{\#} (J_2P_1)) v_2$$

$$P(BP)^{\#} = (BP)^{\#}$$
when matrix P is
$$= (J_2P_1)^{\#}$$
possibly = 0
dempotent and symmetric

 main advantage: highest priority task is ideally no longer affected by algorithmic singularities (error is restricted only to secondary task)

