Robotics 2

Robots with kinematic redundancy Part 1: Fundamentals

Prof. Alessandro De Luca

Redundant robots

- direct kinematics of the task $r=f(q)$

$$
f:(\mathrm{Q}) \rightarrow \mathrm{R}
$$

$$
\text { joint space }(\operatorname{dim} \mathrm{Q}=N)
$$

- a robot is (kinematically) redundant for the task if $N>M$ (more degrees of freedom than strictly needed for executing the task)
- r may contain the position and/or the orientation of the end-effector or, more in general, be any parameterization of the task (even not in the Cartesian workspace)
- "redundancy" of a robot is thus a relative concept, i.e., it holds with respect to a given task

Some E-E tasks and their dimensions

TASKS [for the robot end-effector (E-E)] dimension M

- position in the plane $\longrightarrow 2$
- position in 3D space 3
- orientation in the plane 1
- pointing in 3D space 2
- position and orientation in 3D space 6
a planar robot with $N=3$ joints is redundant for the task of positioning its E-E in the plane ($M=2$), but NOT for the task of positioning AND orienting the $\mathrm{E}-\mathrm{E}$ in the plane $(M=3)$

Typical cases of redundant robots

- 6R robot mounted on a linear track/rail
- 7 dofs for positioning and orienting its end-effector in 3D space
- 6-dof robot used for arc welding tasks
- task does not prescribe the final roll angle of the welding gun
- dexterous robotic hands
- multiple cooperating manipulators
- manipulator on a mobile base
- humanoid robots, team of mobile robots ...
- "kinematic" redundancy is not the only type...
- redundancy of components (actuators, sensors)
- redundancy in the control/supervision architecture

Uses of robot redundancy

- avoid collision with obstacles (in Cartesian space) ...
- ... or kinematic singularities (in joint space)
- stay within the admissible joint ranges
- increase manipulability in specified directions
- uniformly distribute/limit joint velocities and/or accelerations
- minimize energy consumption or needed motion torques
- optimize execution time
- increase dependability with respect to faults

DLR robots: LWR-III and Justin

7R LWR-III lightweight manipulator: elastic joints (HD), joint torque sensing, 13.5 kg weight $=$ payload

Justin two-arm upper-body humanoid: 43 R actuated $=$ two arms (2×7) + torso (3^{*})

+ head (2) + two hands (2×12), 45 kg weight

Justin carrying a trailer

video

motion planning for DLR Justin robot in the configuration space, avoiding Cartesian obstacles and using robot redundancy

Dual-arm redundancy

DIS, Uni Napoli
two 6R Comau robots, one mounted on a linear track (+1P) coordinated 6D motion using the null-space of the right-side robot ($N-M=1$)

Motion cueing from redundancy

video

Max Planck Institute for Biological Cybernetics, Tübingen
a 6R KUKA KR500 mounted on a linear track (+1P) with a sliding cabin (+1R), used as a dynamic emulation platform for human perception $(N-M=2)$

Self-motion

Obstacle avoidance

6R planar arm moving on a given geometric path for the E-E $(N-M=4)$

An Echord++ industrial experiment

Inverse kinematics problem

- find $q(t)$ that realizes the task: $f(q(t))=r(t)$ (at all times t)
- infinite solutions exist when the robot is redundant (even for $r(t)=r=$ constant)

$$
N=3>2=M
$$

- the robot arm may have "internal displacements" that are unobservable at the task level (e.g., not contributing to E-E motion)
- these joint displacements can be chosen so as to improve/optimize in some way the behavior of the robotic system
- self-motion: an arm reconfiguration in the joint space that does not change/affect the value of the task variables r
- solutions are mainly sought at differential level (e.g., velocity)

Redundancy resolution

Global methods

given $r(t), t \in\left[t_{0}, t_{0}+T\right], q\left(t_{0}\right)$

$$
q(t), t \in\left[t_{0}, t_{0}+T\right]
$$

OFF-LINE
relatively EASY (a LQ problem)
quite DIFFICULT
(nonlinear TPBV problems arise)

Local resolution methods

three classes of methods for solving $\dot{r}=J(q) \dot{q}$

1 Jacobian-based methods (here, analytic Jacobian in genera!!) among the infinite solutions, one is chosen, e.g., that minimizes a suitable (possibly weighted) norm

2 null-space methods
a term is added to the previous solution so as not to affect execution of the task trajectory, i.e., belonging to the null-space $\mathcal{N}(J(q))$
3 task augmentation methods
redundancy is reduced/eliminated by adding $S \leq N-M$ further auxiliary tasks (when $S=N-M$, the problem has been "squared")

$$
r=f(q) \boxtimes \dot{r}=J(q) \dot{q}
$$

1 Jacobian-based methods

we look for a solution to $\dot{r}=J(q) \dot{q}$ in the form

$$
J=\underbrace{}_{N}\}_{M} \quad \dot{q}=K(q) \dot{r} \quad K=\}_{M}\}_{N}
$$

minimum requirement for $K: J(q) K(q) J(q)=J(q)$
($\Rightarrow K=$ generalized inverse of J)

$$
\forall \dot{r} \in \mathcal{R}(J(q)) \Rightarrow J(q)[K(q) \dot{r}]=J(q) K(q) J(q) \dot{q}=J(q) \dot{q}=\dot{r}
$$

example:

if $J=\left[J_{a} J_{b}\right], \operatorname{det}\left(J_{a}\right) \neq 0$, one such generalized inverse of J is $K_{r}=\binom{J_{a}^{-1}}{0}$ (actually, this is a stronger right-inverse)

Pseudoinverse

$$
\dot{q}=J^{\#}(q) \dot{r} \quad \ldots \text { a very common choice: } K=J^{\#}
$$

- $J^{\#}$ always exists, and is the unique matrix satisfying

$$
\begin{array}{clrl}
J J^{\#} J & =J & & J^{\#} J J^{\#}=J^{\#} \\
\left(J J^{\#}\right)^{T} & =J J^{\#} & & \left(J^{\#} J\right)^{T}=J^{\#} J
\end{array}
$$

- if J is full (row) rank, $J^{\#}=J^{T}\left(J J^{T}\right)^{-1}$; else, it is computed numerically using the SVD (Singular Value Decomposition) of J (pinv of Matlab)
- the pseudo-inverse joint velocity is the only that minimizes the norm $\|\dot{q}\|^{2}=\dot{q}^{T} \dot{q}$ among all joint velocities that minimize the task error norm $\|\dot{r}-J(q) \dot{q}\|^{2}$
- if the task is feasible ($\dot{r} \in \mathcal{R}(J(q))$), there will be no task error

Weighted pseudoinverse

$$
\dot{q}=J_{W}^{\#}(q) \dot{r}
$$

another choice: $K=J_{W}^{\#}$

- the solution \dot{q} minimizes the weighted norm

$$
\|\dot{q}\|_{W}^{2}=\dot{q}^{T} W \dot{q} \quad \begin{gathered}
W>0, \text { symmetric } \\
\text { (often diagonal) }
\end{gathered}
$$

- if J is full (row) rank, $J_{W}^{\#}=W^{-1} J^{T}\left(J W^{-1} J^{T}\right)^{-1}$
- large weight $W_{i} \Rightarrow$ small \dot{q}_{i}
- larger weights for proximity joints (carrying/moving more "mass")
- weights chosen proportionally to the inverse of the joint ranges
- it is NOT a "pseudoinverse" (4th relation does not hold), but it shares similar properties

Singular Value Decomposition (SVD)

- the SVD routine of Matlab applied to J provides two orthonormal matrices $U_{M \times M}$ and $V_{N \times N}$, and a matrix $\Sigma_{M \times N}$ of the form

$$
\Sigma=\left(\begin{array}{cccc|c}
\sigma_{1} & & & \\
& \sigma_{2} & & & 0_{M \times(N-M)} \\
& & \ddots & & 0_{M \times(N-M}
\end{array}\right) \quad \begin{gathered}
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{\rho}>0 \\
\sigma_{\rho+1}=\cdots=\sigma_{M}=0 \\
\\
\end{gathered}
$$

where $\rho=\operatorname{rank}(J) \leq M$, so that their product is

$$
J=U \Sigma V^{T}
$$

- the columns of U are eigenvectors of $J J^{T}$ (associated to its nonnegative eigenvalues $\sigma_{i}{ }^{2}$), the columns of V are eigenvectors of $J^{T} J$
- the last $N-\rho$ columns of V are a basis for the null space of J

$$
J v_{i}=\sigma_{i} u_{i} \quad(\mathrm{i}=1, \cdots, \rho) \quad J v_{i}=0 \quad(\mathrm{i}=\rho+1, \cdots, N)
$$

Computation of pseudoinverses

- show that the pseudoinverse of J is equal to

$$
\begin{aligned}
& J=U \Sigma V^{T} \quad \Rightarrow \quad J^{\#}=V \Sigma^{\#} U^{T} \quad \Sigma^{\#}=\left(\begin{array}{cccc}
\frac{1}{\sigma_{1}} & & & \\
& \ddots & \frac{1}{\sigma_{\rho}} & \\
& & & \\
\\
& & 0_{(M-\rho) \times(M-\rho)} \\
\hline & & 0_{(N-M) \times M}
\end{array}\right)
\end{aligned}
$$

- show that matrix $J_{W}^{\#}$ appears when solving the constrained linearquadratic (LQ) optimization problem (with $W>0$, symmetric, and assuming J of full rank)

$$
\min \frac{1}{2}\|\dot{q}\|_{W}^{2} \quad \text { s.t. } \quad J(q) \dot{q}-\dot{r}=0
$$

and that the pseudoinverse is a particular case for $W=I$

- show that a weighted pseudoinverse of J can be computed by SVD/pinv as

$$
J_{a u x}=J W^{-1 / 2} \quad J_{W}^{\#}=W^{-1 / 2} \operatorname{pinv}\left(J_{a u x}\right)
$$

applies equally to square and non-square matrices

Singularity robustness Damped Least Squares (DLS)

unconstrained
minimization
of a suitable objective function

$$
\min _{\dot{q}} H(\dot{q})=\frac{\mu^{2}}{2}\|\dot{q}\|^{2}+\frac{1}{2}\|\dot{r}-J \dot{q}\|^{2}
$$

compromise between large joint velocity and task accuracy

$$
\text { SOLUTION } \dot{q}=J_{D L S}(q) \dot{r}=J^{T}\left(J J^{T}+\mu^{2} I_{M}\right)^{-1} \dot{r}
$$

- induces a robust behavior when crossing singularities, but in its basic version gives always a task error $\dot{e}=\mu^{2}\left(J J^{T}+\mu^{2} I_{M}\right)^{-1} \dot{r}$ (as for $N=M$)
- $J_{D L S}$ is not a generalized inverse K
- using SVD: $J=U \Sigma V^{T} \Rightarrow J_{D L S}=V \Sigma_{D L S} U^{T}, \Sigma_{D L S}=\left(\begin{array}{cl}\left.\frac{\operatorname{diag}\left\{\frac{\sigma_{i}}{\sigma_{i}^{2}+\mu^{2}}\right\}}{\frac{\rho \times \rho}{0_{(N-M) \times \rho}}} \begin{array}{l}0_{(M-\rho) \times(M-\rho)} \\ 0_{(N-M)(M-\rho)}\end{array}\right)\end{array}\right.$
- choice of a variable damping factor $\mu^{2}(q) \geq 0$, function of the minimum singular value $\sigma_{\rho}(q)>0$ of $J \cong$ a measure of distance from a singularity (if $\rho=M$) or of further loss of rank (when $\rho<M$)
- numerical filtering: introduces damping only/mostly in non-feasible directions for the task (see Maciejewski and Klein, J of Rob Syst, 1988)

Behavior of DLS solution

a. comparison of joint velocity norm with PINV (pseudoinverse) or DLS solutions

- in a task direction along a vector u of U, when the associated singular value $\sigma \rightarrow 0$
- PINV goes to infinity (and then is 0 at $\sigma=0$)
- DLS peaks a value of $1 / 2 \mu$ at $\sigma=\mu$ (and then smoothly goes to 0...)
b. graphical interpretation of "damping" effect (here $M=N=2$, for simplicity)

Numerical example of DLS solution

planar 2 R arm, unit links, close to (stretched) singular configuration $q_{1}=45^{\circ}, q_{2}=1.5^{\circ}$)

Robotics 2

Limits of Jacobian-based methods

- no guarantee that singularities are globally avoided during task execution
- despite joint velocities are kept to a minimum, this is only a local property and "avalanche" phenomena may occur
- typically lead to non-repeatable motion in the joint space
- cyclic motions in task space do not map to cyclic motions in joint space

Drift with Jacobian pseudoinverse

- a 7R KUKA LWR4 robot moves in the vicinity of a human operator
- we command a cyclic Cartesian path (only in position, $M=3$), to be repeated several times using the pseudoinverse solution
- (unexpected) collision of a link occurs during the third cycle ...

2 Null-space methods

general solution of $J \dot{q}=\dot{r}$

$$
\dot{q}=\underbrace{J^{\#} \dot{r}}_{\text {a particular solution }}+\underbrace{\left(I-J^{\#} J\right)}_{\text {"orthogonal" projection }} \dot{q_{0}}) \leftrightarrow \begin{gathered}
\text { all solutions of the associated } \\
\text { homogeneous equation } J \dot{q}=0 \\
\text { (self-motions) }
\end{gathered}
$$

(here, the pseudoinverse)
in $\mathcal{R}\left(J^{T}\right)$
of \dot{q}_{0} in $\mathcal{N}(J)$

- symmetric
- idempotent: $\left[I-J^{\#} J\right]^{2}=\left[I-J^{\#} J\right]$
- $\left[I-J^{\#} J\right]^{\#}=\left[I-J^{\#} J\right]$
- $J^{\#} \dot{r}$ is orthogonal to $\left[I-J^{\#} J\right] \dot{q}_{0}$
even more in general...
$\dot{q}=K_{1} \dot{r}+\left(I-K_{2} J\right) \dot{q}_{0} \quad K_{1}, K_{2}$ generalized inverses of J
how do we choose \dot{q}_{0} ?
properties of projector $\left[I-J^{\#} J\right]$

of \dot{q}_{0} in $\mathcal{N}(J)$	prop
- symmetric	projector
- idempotent: $\left[I-J^{\#} J\right]^{2}=\left[I-J^{\#} J\right]$	
	- $\left[I-J^{\#} J\right]^{\#}=\left[I-J^{\#} J\right]$
\bullet	$J^{\#} \dot{r}$ is orthogonal to $\left[I-J^{\#} J\right] \dot{q}_{0}$

... but with less nice properties! ($J K_{i} J=J$)

Geometric view on Jacobian null space

in the space of velocity commands

a correction is added to the original pseudoinverse (minimum norm) solution
i) which is in the null space of the Jacobian
ii) and possibly satisfies additional criteria or objectives

Linear-Quadratic Optimization

generalities

$$
\begin{gathered}
\min _{x} H(x)=\frac{1}{2}\left(x-x_{0}\right)^{T} W\left(x-x_{0}\right) \\
\text { s.t. } \quad J x=y
\end{gathered}
$$

$$
x \in \mathbb{R}^{N}
$$

$$
W>0 \text { (symmetric) }
$$

$$
y \in \mathbb{R}^{M}
$$

$$
\operatorname{rank}(J)=\rho(J)=M
$$

$$
L(x, \lambda)=H(x)+\lambda^{T}(J x-y) \leftarrow \text { Lagrangian (with multipliers } \lambda \text {) }
$$

Linear-Quadratic Optimization

application to robot redundancy resolution

$$
\begin{gathered}
\min _{\dot{q}} H(\dot{q})=\frac{1}{2}\left(\dot{q}-\dot{q}_{0}\right)^{T} W\left(\dot{q}-\dot{q}_{0}\right) \\
\text { s.t. } J \dot{q}=\dot{r}
\end{gathered}
$$

\dot{q}_{0} is a "privileged" joint velocity

SOLUTION $\dot{q}=\dot{q}_{0}+\underbrace{W^{-1} J^{T}\left(J W^{-1} J^{T}\right.}_{J_{W}^{\#}})^{-1}\left(\dot{r}-J \dot{q}_{0}\right)$

$$
\dot{q}=J_{W}^{\#} \dot{r}+\left(I-J_{W}^{\#} J\right) \dot{q}_{0}
$$

minimum weighted norm solution (for $\dot{q}_{0}=0$)
"projection" matrix in the null-space $\mathcal{N}(J)$

Projected Gradient (PG)

$$
\dot{q}=J^{\#} \dot{r}+\left(I-J^{\#} J\right) \dot{q}_{0}
$$

the choice $\dot{q}_{0}=\nabla_{q} \xrightarrow{H(q)} \rightarrow$ differentiable objective function realizes one step of a constrained optimization algorithm
while executing the time-varying task $r(t)$ the robot tries to increase the value of $H(q)$

$$
\begin{array}{ll}
\begin{array}{l}
\text { projected } \\
\text { gradient }
\end{array} & \text { for a fixed } \bar{r}: S_{q}=\left\{q \in \mathbb{R}^{N}: f(q)=\bar{r}\right\} \\
\text { Robotics 2 }
\end{array}
$$

Typical objective functions $H(q)$

- manipulability (maximize the "distance" from singularities)

$$
H_{\operatorname{man}}(q)=\sqrt{\operatorname{det}\left[J(q) J^{T}(q)\right]}
$$

- joint range (minimize the "distance" from the mid points of the joint ranges)

$$
\begin{aligned}
& q_{i} \in\left[q_{m, i}, q_{M, i}\right] \\
& \bar{q}_{i}=\frac{q_{M, i}+q_{m, i}}{2}
\end{aligned}
$$

$$
H_{\text {range }}(q)=\frac{1}{2 N} \sum_{i=1}^{N}\left(\frac{q_{i}-\bar{q}_{i}}{q_{M, i}-q_{m, i}}\right)^{2}
$$

$$
\dot{q}_{0}=-\nabla_{q} H(q)
$$

- obstacle avoidance (maximize the minimum distance to Cartesian obstacles)

$$
\underset{\substack{\text { "clearance" }}}{\operatorname{also} \text { known as }} H_{\mathrm{obs}}(q)=\min _{a \in \text { robot }}^{b \in \text { obstacles }} \boldsymbol{}\|a(q)-b\|^{2} \left\lvert\, \begin{gathered}
\text { potential difficulties due } \\
\text { to non-differentiability } \\
\text { (this is a max-min problem) }
\end{gathered}\right.
$$

Singularities of planar 3R arm

the robot is redundant for a positioning task in the plane $(M=2)$

$H(q)=\sin ^{2} q_{2}+\sin ^{2} q_{3}$

this H is not $H_{\text {man }}$ but has the same minima

Minimum distance computation in human-robot interaction

LWR4 robot with a finite number of control points $a(q)$ (8 , including the E-E)
a Kinect sensor monitors the workspace giving the 3D position of points b on obstacles that are fixed or moving (like humans)
distances in 3D (and then the clearance) are computed in this case as

$$
\min _{\substack{a \in\{\text { control points }\} \\ b \in \text { human body }}}\|a(q)-b\|^{2}
$$

Comments on null-space methods

- the projection matrix $\left(I-J^{\#} J\right)$ has dimension $N \times N$, but only rank $N-M$ (if J is full rank M), with some waste of information
- actual (efficient) evaluation of the solution

$$
\dot{q}=J^{\#} \dot{r}+\left(I-J^{\#} J\right) \dot{q}_{0}=\dot{q}_{0}+J^{\#}\left(\dot{r}-J \dot{q}_{0}\right)
$$

but the pseudoinverse is needed anyway, and this is computationally intensive (SVD in the general case)

- in principle, the additional complexity of a redundancy resolution method should depend only on the redundancy degree $N-M$
- a constrained optimization method is available, which is known to be more efficient than the projected gradient (PG) -at least when the Jacobian has full rank ...

Decomposition of joint space

- if $\rho(J(q))=M$, there exists a decomposition of the set of joints (possibly, after a reordering)

$$
\left.q=\binom{q_{a}}{q_{b}}\right\}_{\}_{N-M}^{M}} \text { such that } \overbrace{J_{a}(q)=\frac{\partial f}{\partial q_{a}}} \text { is nonsingular }
$$

- from the implicit function theorem, there exists an inverse function g

$$
\begin{gathered}
f\left(q_{a}, q_{b}\right)=r \quad \Longrightarrow \quad q_{a}=g\left(r, q_{b}\right) \\
\text { with } \frac{\partial g}{\partial q_{b}}=-\left(\frac{\partial f}{\partial q_{a}}\right)^{-1} \frac{\partial f}{\partial q_{b}}=-J_{a}^{-1}(q) J_{b}(q)
\end{gathered}
$$

- the $N-M$ variables q_{b} can be selected independently (e.g., they are used for optimizing an objective function $H(q)$, "reduced" via the use of g to a function of q_{b} only)
- $q_{a}=g\left(r, q_{b}\right)$ is then chosen so as to correctly execute the task

Reduced Gradient (RG)

- $H(q)=H\left(q_{a}, q_{b}\right)=H\left(g\left(r, q_{b}\right), q_{b}\right)=H^{\prime}\left(q_{b}\right)$, with r at current value
- the Reduced Gradient (w.r.t. q_{b} only, but still keeping the effects of this choice into account) is

$$
\begin{aligned}
\nabla_{q_{b}} H^{\prime} & =\left[\begin{array}{ll}
-\left(J_{a}^{-1} J_{b}\right)^{T} & I_{N-M}
\end{array}\right] \nabla_{q} H \\
& \left(\neq \nabla_{q_{b}} H \text { only }!!\right)
\end{aligned}
$$

- algorithm

$$
\nabla_{q_{b}} H^{\prime}=0
$$

is a "compact"
(i.e., $N-M$ dimensional)
necessary condition
of constrained optimality

$$
\begin{array}{ll|}
\dot{q}_{b}=\nabla_{q_{b}} H^{\prime} & \begin{array}{c}
\text { step in the gradient direction of } \\
\text { the reduced }(N-M) \text {-dim space }
\end{array} \\
J_{a} \dot{q}_{a}+J_{b} \dot{q}_{b}=\dot{r} & \begin{array}{c}
\text { satisfaction of the } M \text {-dim } \\
\text { task constraints }
\end{array} \\
\dot{q}_{a}=J_{a}^{-1}\left(\dot{r}-J_{b} \dot{q}_{b}\right)
\end{array}
$$

Comparison between PG and RG

- Projected Gradient (PG)

$$
\dot{q}=J^{\#} \dot{r}+\left(I-J^{\#} J\right) \nabla_{q} H
$$

- Reduced Gradient (RG)

$$
\dot{q}=\binom{\dot{q}_{a}}{\dot{q}_{b}}=\binom{J_{a}^{-1}}{0} \dot{r}+\binom{-J_{a}^{-1} J_{b}}{I}\left(-\left(\begin{array}{ll}
-1 & -1 \\
a
\end{array}\right)^{T} \quad I\right) \nabla_{q} H
$$

- RG is analytically simpler and numerically faster than PG, but requires the search for a non-singular minor $\left(J_{a}\right)$ of the robot Jacobian
- if $r=\operatorname{cost} \& N-M=1 \Rightarrow$ same (unique) direction for \dot{q}, but RG has automatically a larger optimization step size
- else \Rightarrow RG and PG methods provide always different evolutions

Analytic comparison PPR robot

Joint range limits

$$
\begin{aligned}
& q=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right) \theta=T \theta \\
& \begin{array}{l}
-90^{\circ} \leq \theta_{i} \leq 90^{\circ} \\
\text { absolute } \Leftrightarrow \text { relative } \\
\text { coordinates } \\
\theta=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right) q=T^{-1} q
\end{array} \quad \begin{array}{c}
\text { S }
\end{array} \quad \begin{array}{c}
\text { E-E linear path } \\
\text { from } \mathrm{S} \text { to } \mathrm{G}
\end{array} \\
& \text { initial configuration }
\end{aligned}
$$

numerical comparison among pseudoinverse (PS), projected gradient (PG), and reduced gradient (RG) methods

Numerical results

minimizing distance from mid joint range

steps of numerical simulation

Numerical results

self-motion for escaping singularities

3 Task augmentation methods

- an auxiliary task is added (task augmentation)

$$
s \uparrow f_{y}(q)=y \quad s \leq N-M
$$

corresponding to some desirable feature for the solution

$$
r_{A}=\binom{r}{y}=\binom{f(q)}{f_{y}(q)} \Rightarrow \dot{r}_{A}=\binom{J(q)}{J_{y}(q)} \dot{q}=J_{A}(q) \dot{q} \underbrace{J_{A}}_{N}\} M+S
$$

- a solution is chosen still in the form of a generalized inverse

$$
\dot{q}=K_{A}(q) \dot{r}_{A}
$$

or by adding a term in the null space of the augmented Jacobian matrix J_{A}

Augmented task

example

Augmenting the task ...

- advantage: better shaping of the inverse kinematic solution
- disadvantage: algorithmic singularities are introduced when

$$
\rho(J)=M \quad \rho\left(J_{y}\right)=S \quad \text { but } \quad \rho\left(J_{A}\right)<M+S
$$

to avoid this, it should be always $\mathcal{R}\left(J^{T}\right) \cap \mathcal{R}\left(J_{y}^{T}\right)=\emptyset$
difficult to be obtained globally! rows of J AND rows of J_{y}
are all together linearly independent

Extended Jacobian ($S=N-M$)

- square J_{A} : in the absence of algorithmic singularities, we can choose

$$
\dot{q}=J_{A}^{-1}(q) \dot{r}_{A}
$$

- the scheme is then repeatable
- provided no singularities are encountered during a complete task cycle*
- when the $N-M$ conditions $f_{y}(q)=0$ correspond to necessary (and sufficient) conditions for constrained optimality of a given objective function $H(q)$ (see RG method, slide \#36), this scheme guarantees that constrained optimality is locally preserved during task execution
- in the vicinity of algorithmic singularities, for the simultaneous execution of the original task and the auxiliary task(s), one can use the DLS method; however, both tasks will be affected by errors

[^0]
Extended Jacobian

MACRO-MICRO manipulator

Task Priority

if the original (primary) task $\dot{r}_{1}=J_{1}(q) \dot{q}$ has higher priority than the auxiliary (secondary) task $\dot{r}_{2}=J_{2}(q) \dot{q}$

- we first address the task with highest priority

$$
\dot{q}=J_{1}^{\#} \dot{r}_{1}+\left(I-J_{1}^{\#} J_{1}\right) v_{1}
$$

- and then choose v_{1} so as to satisfy, if possible, also the secondary (lower priority) task

$$
\dot{r}_{2}=J_{2} \dot{q}=J_{2} J_{1}^{\#} \dot{r}_{1}+J_{2}\left(I-J_{1}^{\#} J_{1}\right) v_{1}=J_{2} J_{1}^{\#} \dot{r}_{1}+J_{2} P_{1} v_{1}
$$

the general solution for v_{1} takes the usual form

$$
v_{1}=\left(J_{2} P_{1}\right)^{\#}\left(\dot{r}_{2}-J_{2} J_{1}^{\#} \dot{r}_{1}\right)+\left(I-\left(J_{2} P_{1}\right)^{\#}\left(J_{2} P_{1}\right)\right) v_{2}
$$

v_{2} is available for the execution of further tasks of lower (ordered) priorities

Task Priority (continue)

- substituting the expression of v_{1} in \dot{q}

$$
\begin{aligned}
& \dot{q}=J_{1}^{\#} \dot{r}_{1}+P_{1}\left(J_{2} P_{1}\right)^{\#}\left(\dot{r}_{2}-J_{2} J_{1}^{\#} \dot{r}_{1}\right)+P_{1}\left(I-\left(J_{2} P_{1}\right)^{\#}\left(J_{2} P_{1}\right)\right) v_{2} \\
& \quad P(B P)^{\#}=(B P)^{\#} \begin{array}{l}
\text { when matrix } P \text { is } \\
\text { idempotent and symmetric }
\end{array}=\left(J_{2} P_{1}\right)^{\#}
\end{aligned}
$$

- main advantage: highest priority task is ideally no longer affected by algorithmic singularities (error is restricted only to secondary task)

```
task 1: follow -
task 2: keep third link
    vertical
```


[^0]: * there exists an unexpected phenomenon in some 3R manipulators having "generic" kinematics: the robot may sometimes perform a pose change after a full cycle, even if no singularity has been encountered during motion (see J. Burdick, Mech. Mach. Theory, 30(1), 1995)

