
Robotics 2

Prof. Alessandro De Luca

Robots with
kinematic redundancy

Part 1: Fundamentals

Redundant robots

Robotics 2 2

n direct kinematics of the task 𝑟 = 𝑓(𝑞)

n a robot is (kinematically) redundant for the task if 𝑁 > 𝑀
(more degrees of freedom than strictly needed for executing the task)

n 𝑟 may contain the position and/or the orientation of the
end-effector or, more in general, be any parameterization
of the task (even not in the Cartesian workspace)

n “redundancy” of a robot is thus a relative concept, i.e., it
holds with respect to a given task

𝑓: Q ® R

task space (dim R = 𝑀)joint space (dim Q = 𝑁)

Some E-E tasks and their dimensions

n position in the plane
n position in 3D space
n orientation in the plane
n pointing in 3D space
n position and orientation in 3D space

2
3
1
2
6

a planar robot with 𝑁 = 3 joints is redundant for the task
of positioning its E-E in the plane (𝑀 = 2), but NOT for the

task of positioning AND orienting the E-E in the plane (𝑀 = 3)

TASKS [for the robot end-effector (E-E)] dimension 𝑀

Robotics 2 3

Typical cases of redundant robots
n 6R robot mounted on a linear track/rail

n 7 dofs for positioning and orienting its end-effector in 3D space

n 6-dof robot used for arc welding tasks
n task does not prescribe the final roll angle of the welding gun

n dexterous robotic hands
n multiple cooperating manipulators
n manipulator on a mobile base
n humanoid robots, team of mobile robots ...
n “kinematic” redundancy is not the only type…

n redundancy of components (actuators, sensors)
n redundancy in the control/supervision architecture

Robotics 2 4

Uses of robot redundancy

n avoid collision with obstacles (in Cartesian space) …
n … or kinematic singularities (in joint space)
n stay within the admissible joint ranges
n increase manipulability in specified directions
n uniformly distribute/limit joint velocities and/or accelerations
n minimize energy consumption or needed motion torques
n optimize execution time
n increase dependability with respect to faults
n ...

all objectives should be
quantitatively “measurable”

Robotics 2 5

DLR robots: LWR-III and Justin

7R LWR-III lightweight manipulator:
elastic joints (HD), joint torque sensing,

13.5 kg weight = payload

Justin two-arm upper-body humanoid:
43R actuated =

 two arms (2×7) + torso (3*)
+ head (2) + two hands (2×12),

45 kg weight
Robotics 2 6* = one joint is dependent on the motion of the other two

Justin carrying a trailer

Robotics 2 7

motion planning for DLR Justin robot in the configuration space,
avoiding Cartesian obstacles and using robot redundancy

video

Dual-arm redundancy

Robotics 2 8

two 6R Comau robots, one mounted on a linear track (+1P)
coordinated 6D motion using the null-space of the right-side robot (𝑁 −𝑀 = 1)

DIS, Uni Napoli

video

Motion cueing from redundancy

Robotics 2 9

a 6R KUKA KR500 mounted on a linear track (+1P) with a sliding cabin (+1R),
used as a dynamic emulation platform for human perception (𝑁 −𝑀 = 2)

Max Planck Institute for Biological Cybernetics, Tübingen

video

Self-motion

8R Dexter: self-motion with
constant 6D pose of E-E (𝑁 −𝑀 = 2)

6R robot with spherical shoulder
in compliant tasks for the

Cartesian E-E position (𝑁 −𝑀 = 3)
Robotics 2 10

video

Nakamura’s Lab, Uni Tokyo

video

Obstacle avoidance

6R planar arm moving on a given geometric path for the E-E (𝑁 −𝑀 = 4)

Robotics 2 11

video

An Echord++ industrial experiment

Robotics 2 12

3 videos

Inverse kinematics problem
n find 𝑞(𝑡) that realizes the task: 𝑓 𝑞 𝑡 = 𝑟(𝑡)	(at all times 𝑡)

n infinite solutions exist when the robot is redundant
(even for 𝑟(𝑡) = 𝑟	= constant)

n the robot arm may have “internal displacements” that are
unobservable at the task level (e.g., not contributing to E-E motion)
n these joint displacements can be chosen so as to improve/optimize

in some way the behavior of the robotic system

n self-motion: an arm reconfiguration in the joint space that
does not change/affect the value of the task variables 𝑟

n solutions are mainly sought at differential level (e.g., velocity)

𝑟	= constant
 E-E position𝑁 = 3 > 2 = 𝑀

Robotics 2 13

given �̇�(𝑡) and 𝑞(𝑡), 𝑡 = 𝑘𝑇𝑠

Redundancy resolution
via optimization of an objective function

Local methods Global methods
given 𝑟(𝑡), 𝑡 ∈ [𝑡!, 𝑡! + 𝑇], 𝑞(𝑡0)

optimization of 𝐻(𝑞, �̇�) optimization of ∫"!
"!#$𝐻(𝑞, �̇�)𝑑𝑡

𝑞(𝑡), 𝑡 ∈ [𝑡!, 𝑡! + 𝑇]
ON-LINE

OFF-LINE

Robotics 2 14

discrete-time form

relatively EASY
(a LQ problem)

quite DIFFICULT
(nonlinear TPBV problems arise)

�̇�(𝑘𝑇!)

𝑞 𝑘 + 1 𝑇! = 𝑞 𝑘𝑇! + 𝑇! �̇� 𝑘𝑇!

Local resolution methods

n Jacobian-based methods (here, analytic Jacobian in general!)
among the infinite solutions, one is chosen, e.g., that minimizes a
suitable (possibly weighted) norm

n null-space methods
a term is added to the previous solution so as not to affect execution
of the task trajectory, i.e., belonging to the null-space 𝒩(𝐽 𝑞)

n task augmentation methods
redundancy is reduced/eliminated by adding 𝑆 ≤ 𝑁 −𝑀 further
auxiliary tasks (when 𝑆 = 𝑁 −𝑀, the problem has been “squared”)

three classes of methods for solving �̇� = 𝐽(𝑞)�̇�
1

2

3

Robotics 2 15

𝑟 = 𝑓(𝑞) �̇� = 𝐽(𝑞)�̇�

Jacobian-based methods
we look for a solution to �̇� = 𝐽 𝑞 �̇� in the form

𝑀

𝑁

minimum requirement for 𝐾: 𝐽 𝑞 𝐾 𝑞 𝐽 𝑞 = 𝐽(𝑞)
 (𝐾 = generalized inverse of 𝐽)

example:
if 𝐽 = 𝐽! 𝐽" , det(𝐽!) ¹ 0, one such generalized inverse of 𝐽 is

 (actually, this is a stronger right-inverse)

1

𝐽 =

𝑁

𝑀

Robotics 2 16

�̇� = 𝐾 𝑞 �̇�

𝐾# =
𝐽!$%
0

∀�̇� ∈ ℛ(𝐽 𝑞) 𝐽 𝑞 𝐾(𝑞)�̇� = 𝐽 𝑞 𝐾 𝑞 𝐽 𝑞 �̇� = 𝐽 𝑞 �̇� = �̇�

𝐾 =

Pseudoinverse

n 𝐽# always exists, and is the unique matrix satisfying

n if 𝐽 is full (row) rank, 𝐽# = 𝐽$ 𝐽 𝐽$ () ; else, it is computed

numerically using the SVD (Singular Value Decomposition) of 𝐽
(pinv of Matlab)

n the pseudo-inverse joint velocity is the only that minimizes the
norm �̇� * = �̇�$�̇� among all joint velocities that minimize the
task error norm �̇� − 𝐽(𝑞)�̇� *

n if the task is feasible (�̇� ∈ ℛ 𝐽(𝑞)), there will be no task error

... a very common choice: 𝐾 = 𝐽#

Robotics 2 17

�̇� = 𝐽#(𝑞)�̇�

𝐽 𝐽# 𝐽 = 𝐽 𝐽# 𝐽 𝐽# = 𝐽#

𝐽# 𝐽 $ = 𝐽# 𝐽𝐽 𝐽# $ = 𝐽 𝐽#

Weighted pseudoinverse

n the solution �̇� minimizes the weighted norm

n if 𝐽 is full (row) rank, 𝐽## = 𝑊$%𝐽& 𝐽𝑊$%𝐽& $%

n large weight 𝑊𝑖 ⇒ small �̇�!
n larger weights for proximity joints (carrying/moving more “mass”)
n weights chosen proportionally to the inverse of the joint ranges

n it is NOT a “pseudoinverse” (4th relation does not hold),
but it shares similar properties

another choice: 𝐾 = 𝐽'#

𝑊 > 	0, symmetric
(often diagonal)

Robotics 2 18

�̇� = 𝐽## 𝑞 �̇�

�̇� #
' = �̇�&𝑊 �̇�

Singular Value Decomposition (SVD)
n the SVD routine of Matlab applied to 𝐽 provides two orthonormal

matrices 𝑈(×(and 𝑉*×*, and a matrix Σ(×* of the form

 where 𝜌 = rank(𝐽) ≤ 𝑀, so that their product is

n the columns of 𝑈 are eigenvectors of 𝐽 𝐽𝑇	(associated to its non-
negative eigenvalues 𝜎𝑖2), the columns of 𝑉 are eigenvectors of 𝐽𝑇𝐽

n the last 𝑁 − 𝜌 columns of 𝑉 are a basis for the null space of 𝐽

Robotics 2 19

singular values of 𝐽

𝐽 = 𝑈Σ𝑉$

Σ =

𝜎%
𝜎+

⋱
𝜎(

0(×(*$()

𝜎% ≥ 𝜎+ ≥ ⋯ ≥ 𝜎. > 0
𝜎./% = ⋯ = 𝜎(= 0

𝐽𝑣, = 𝜎,𝑢, (i = 1,⋯ , 𝜌) 𝐽𝑣, = 0 (i = ρ + 1,⋯ ,𝑁)

Computation of pseudoinverses
n show that the pseudoinverse of 𝐽 is equal to

 for any rank 𝜌 of 𝐽
n show that matrix 𝐽'# appears when solving the constrained linear-

quadratic (LQ) optimization problem (with 𝑊 > 0, symmetric, and
assuming 𝐽 of full rank)

and that the pseudoinverse is a particular case for 𝑊 = 𝐼
n show that a weighted pseudoinverse of J can be computed by

SVD/pinv as

 Robotics 2 20

pinv(𝐽𝑎𝑢𝑥)

𝐽 = 𝑈Σ𝑉$ 𝐽# = 𝑉Σ#𝑈$

1
𝜎!

⋱
1
𝜎"

0($%")×($%")_______________________________
0((%$)×$

Σ# =

min)
*
�̇� -

* s.t. 𝐽 𝑞 �̇� − �̇� = 0

𝐽!56 = 𝐽𝑊$%/+ 𝐽'# = 𝑊$%/+

⇒

Singularity robustness
Damped Least Squares (DLS)

n induces a robust behavior when crossing singularities, but in its basic
version gives always a task error �̇� = 𝜇" 𝐽 𝐽# + 𝜇"𝐼$ %&�̇� (as for 𝑁 = 𝑀)

n 𝐽𝐷𝐿𝑆 is not a generalized inverse 𝐾
n using SVD: 𝐽 = 𝑈 Σ 𝑉𝑇	⇒

n choice of a variable damping factor 𝜇2(𝑞) ≥ 0, function of the minimum
singular value 𝜎.(𝑞) > 0 of 𝐽 ≅ a measure of distance from a singularity
(if 𝜌 = 𝑀) or of further loss of rank (when 𝜌 < 𝑀)

n numerical filtering: introduces damping only/mostly in non-feasible
directions for the task (see Maciejewski and Klein, J of Rob Syst, 1988)

unconstrained
minimization
of a suitable

objective function

compromise between
large joint velocity
and task accuracy

Robotics 2 21

applies equally to
square and non-square

matrices

min
"̇
𝐻 �̇� = #&

$
�̇� $ + %

$
‖�̇� − 𝐽�̇�‖$

SOLUTION �̇� = 𝐽()* 𝑞 �̇� = 𝐽& 𝐽 𝐽& + 𝜇'𝐼+ $%�̇�

𝜌×𝜌𝐽9:; = 𝑉Σ9:;𝑈<,
𝑑𝑖𝑎𝑔

𝜎)
𝜎)* + 𝜇*

0($%")×($%")____________________________________
0((%$)×" 0((%$)×($%")

Σ9:; =

Behavior of DLS solution

Robotics 2 22

• in a task direction along a vector 𝑢 of 𝑈,
when the associated singular value 𝜎 ⟶ 0	
• PINV goes to infinity (and then is 0 at 𝜎 = 0)
• DLS peaks a value of 1/2𝜇 at 𝜎 = 𝜇	(and then

smoothly goes to 0...)

a. comparison of joint velocity norm with
PINV (pseudoinverse) or DLS solutions

b. graphical interpretation of “damping” effect (here 𝑀 = 𝑁 = 2, for simplicity)

approximate
(damped) solution

𝐻(�̇�) =
𝜇!

2 �̇� ! +
1
2 �̇� − 𝐽�̇� !

one equality
constraint

minimum norm
solution

𝐽"�̇� = �̇�"

�̇�"

�̇�! two equality
constraints

exact (unique)
solution

𝐽"�̇� = �̇�"
𝐽!�̇� = �̇�!

�̇�"

�̇�!
two (almost linearly dependent)

equality constraints

exact (ill-conditioned)
solution

�̇�"

�̇�!

𝐽!�̇� = �̇�!

𝐽"�̇� = �̇�"

Numerical example of DLS solution

Robotics 2 23

planar 2R arm, unit links, close to (stretched) singular configuration 𝑞1 = 	45°, 𝑞2 = 	1.5°
	

)

µ2 0 10-4 10-3 10-2 10

√2 .8954 .4755 .4467 .1490

0 6.6⋅10-3 1.4⋅10-2 1.6⋅10-2 .6668
𝐻#$% 0 7.7⋅10-5 2.2⋅10-4 1.2⋅10-3 3.4⋅10-1

∈ ℛ(𝐽) even
@singularity!

�̇� = −1/ 2
1/ 2

(𝜇2 = 10)

iso-level
curves of 𝐻

�̇�+,- =
.133
.066

(𝜇2 = 10-3)

(µ →
 0)

(∞ ← µ)

�̇�+,- =
.472
.055

�̇�∗ = 1
−1

exact
solution
(µ=0)

�̇�∗ = 1
−1

𝐻 =
𝜇+

2 �̇� + +
1
2 �̇� − 𝐽�̇� + ‖�̇�‖

‖�̇�‖

Limits of Jacobian-based methods
n no guarantee that singularities are globally avoided during

task execution
n despite joint velocities are kept to a minimum, this is only a local

property and “avalanche” phenomena may occur
n typically lead to non-repeatable motion in the joint space

n cyclic motions in task space do not map to cyclic motions in joint space

Robotics 2 24

after
1 tour

𝑞,= = 𝑞(0) 𝑞𝑓𝑖𝑛	¹	𝑞𝑖𝑛

𝑞 𝑡 = 𝑞(0) +M
!

"
𝐾 𝑞 𝜏 �̇� 𝜏 𝑑𝜏

Drift with Jacobian pseudoinverse
n a 7R KUKA LWR4 robot moves in the vicinity of a human operator
n we command a cyclic Cartesian path (only in position, 𝑀 = 3), to be

repeated several times using the pseudoinverse solution
n (unexpected) collision of a link occurs during the third cycle ...

Robotics 2 25

video

Null-space methods

a particular solution
(here, the pseudoinverse)

in ℛ(𝐽<)	

general solution of 𝐽�̇� = �̇�

2

Robotics 2 26

• symmetric
• idempotent: 𝐼	– 	𝐽#𝐽 + = 𝐼	–	𝐽#𝐽

• 𝐼	– 	𝐽#𝐽 #= 𝐼	–	𝐽#𝐽 	

• 𝐽#�̇� is orthogonal to [𝐼	– 	𝐽#𝐽]�̇�N

properties of
projector [𝐼	– 	𝐽#𝐽]

“orthogonal” projection
of �̇�0 in 𝒩(𝐽)

�̇� = 𝐽#�̇� + 𝐼 − 𝐽#𝐽 �̇�,
all solutions of the associated
homogeneous equation 𝐽�̇� = 0

(self-motions)

𝐾-, 𝐾2	generalized
inverses of 𝐽
(𝐽𝐾. 	𝐽	 = 	𝐽)

even more in general…

... but with less nice properties!
�̇� = 𝐾)�̇� + 𝐼 − 𝐾*𝐽 �̇�! how do we choose �̇�0?

...its projection
in the

null space
𝐼 − 𝐽#𝐽 �̇�0

Geometric view on Jacobian null space

Robotics 2 27

in the space of velocity commands

a correction is added to the original pseudoinverse (minimum norm) solution
i) which is in the null space of the Jacobian

ii) and possibly satisfies additional criteria or objectives

null space
correction

final
solution

final
solution
(closest
 to �̇�0)

.
generic/preferred

joint velocity...

�̇�&

�̇�"

�̇�!

�̇�"

�̇�!

𝐽�̇� = �̇�

minimum norm
solution

𝐽#�̇�

subspace
𝒩(𝐽)

𝐽�̇� = 0

𝐽#�̇�

𝐽�̇� = �̇�

𝐽�̇� = 0

Linear-Quadratic Optimization
generalities

𝑊 > 0 (symmetric)

s.t. 𝐽	𝑥 = 𝑦
𝑀×𝑁

Lagrangian (with multipliers 𝜆)

Robotics 2 28

min
@
𝐻 𝑥 =

1
2 𝑥 − 𝑥! $𝑊 𝑥 − 𝑥!

𝑥 ∈ ℝA

𝑦 ∈ ℝB
rank 𝐽 = 𝜌(𝐽) = 𝑀

𝐿 𝑥, 𝜆 = 𝐻 𝑥 + 𝜆$(𝐽𝑥 − 𝑦)

𝑥 = 𝑥N −𝑊$%𝐽<𝜆

𝑀×𝑀 invertible

𝜆 = 𝐽𝑊$%𝐽< $% 𝐽𝑥N − 𝑦

necessary
conditions

∇6𝐿 =
𝜕𝐿
𝜕𝑥

<

= 𝑊 𝑥 − 𝑥N + 𝐽<𝜆 = 0

∇R𝐿 =
𝜕𝐿
𝜕𝜆

<

= 𝐽𝑥 − 𝑦 = 0
+

sufficient
condition

for a minimum
∇6+𝐿 = 𝑊 > 0

𝑥 = 𝑥' +𝑊%&𝐽# 𝐽𝑊%&𝐽# %& 𝑦 − 𝐽𝑥'

𝐽𝑥N − 𝐽𝑊$%𝐽<𝜆 − 𝑦 = 0

Linear-Quadratic Optimization
application to robot redundancy resolution

“projection” matrix in
the null-space 𝒩(𝐽)

minimum weighted norm
solution (for �̇�' = 0)

SOLUTION

PROBLEM
�̇�' is a

“privileged”
joint velocity

Robotics 2 29

s.t. 𝐽�̇� = �̇�

min
"̇
𝐻 �̇� =

1
2
�̇� − �̇�& '𝑊 �̇� − �̇�&

�̇� = �̇�! +𝑊()𝐽$ 𝐽𝑊()𝐽$ () �̇� − 𝐽�̇�!

𝐽(#

�̇� = 𝐽"# �̇� + 𝐼 − 𝐽"# 𝐽 �̇�!

Projected Gradient (PG)

 the choice �̇�! = ∇D𝐻 𝑞
realizes one step of a constrained optimization algorithm

while executing the time-varying task 𝑟(𝑡)
the robot tries to increase the value of 𝐻(𝑞)

Robotics 2 30

�̇� = 𝐽#�̇� + 𝐼 − 𝐽#𝐽 �̇�,

is a necessary condition
of constrained optimality

𝑁-dimensional 𝐼 − 𝐽#𝐽 ∇D𝐻 = 0

⇒ �̇� = 𝐼 − 𝐽#𝐽 ∇D𝐻

𝑞1

𝑞+

𝑞3 ∇S𝐻

𝑞

𝑆D = {𝑞 ∈ ℝ𝑁: 𝑓 𝑞 = �̅�	}for a fixed U𝑟:
projected
gradient

𝑆S

® differentiable objective function

Typical objective functions 𝐻(𝑞)

n manipulability (maximize the “distance” from singularities)

n joint range (minimize the “distance” from the mid points of the joint ranges)

n obstacle avoidance (maximize the minimum distance to Cartesian obstacles)
potential difficulties due
to non-differentiability

(this is a max-min problem)

�̇�N = − ∇S𝐻(𝑞)

Robotics 2 31

also known as
“clearance”

𝐻*+,(𝑞) = det 𝐽(𝑞)𝐽'(𝑞)

𝐻EFGHI(𝑞) =
1
2𝑁_

,J)

A
𝑞, − �̀�,

𝑞B,, − 𝑞K,,

*𝑞T ∈ 𝑞U,T , 𝑞(,T

U𝑞T =
𝑞(,T + 𝑞U,T

2

𝐻LMN(𝑞) = min
O ∈ ELMLQ

R ∈ LMNQFSTIN

𝑎 𝑞 − 𝑏 *

Singularities of planar 3R arm

𝑞2
𝑞3

-p

-p

p

p

𝐻(𝑞)

𝑞2

𝑞3
-p 𝑞2	 p

p

𝑞3

-p

iso-level curves of 𝐻(𝑞)

the robot is redundant
for a positioning task
in the plane (𝑀 = 2)

this 𝐻 is not 𝐻man
but has the same minima

independent from 𝑞1!

Robotics 2 32

links of equal (unit) length

unconstrained
maxima of
𝐻(𝑞)

𝐻 𝑞 = sin$𝑞$ + sin$𝑞-

Minimum distance computation
in human-robot interaction

Robotics 2 33

LWR4 robot with
a finite number of
control points 𝒂(𝒒)

(8, including the E-E)

a Kinect sensor monitors
the workspace giving the
3D position of points 𝒃
on obstacles that are

fixed or moving
(like humans)

distances in 3D (and then the clearance)
are computed in this case as

min
! ∈ XYZ[\Y] ^Y_Z[`
" ∈ abcdZ eYfg

𝑎 𝑞 − 𝑏 +

Comments on null-space methods

n the projection matrix (𝐼	–	𝐽#𝐽) has dimension 𝑁×𝑁, but only rank 𝑁 −𝑀
(if 𝐽 is full rank 𝑀), with some waste of information

n actual (efficient) evaluation of the solution

 but the pseudoinverse is needed anyway, and this is computationally
intensive (SVD in the general case)

n in principle, the additional complexity of a redundancy resolution method
should depend only on the redundancy degree 𝑁–𝑀

n a constrained optimization method is available, which is known to be more
efficient than the projected gradient (PG) —at least when the Jacobian
has full rank …

Robotics 2 34

�̇� = 𝐽#�̇� + 𝐼 − 𝐽#𝐽 �̇�& = �̇�& + 𝐽# �̇� − 𝐽�̇�&

Decomposition of joint space
n if r 𝐽 𝑞 = 𝑀, there exists a decomposition of the set of joints

(possibly, after a reordering)

n from the implicit function theorem, there exists an inverse function 𝑔
𝑓 𝑞𝑎, 𝑞𝑏 = 𝑟 𝑞𝑎 = 𝑔(𝑟, 𝑞𝑏)

n the 𝑁 −𝑀 variables 𝑞𝑏 can be selected independently (e.g., they are
used for optimizing an objective function 𝐻(𝑞), “reduced” via the use
of 𝑔 to a function of 𝑞𝑏 only)

n 𝑞𝑎 = 𝑔(𝑟, 𝑞𝑏)	is then chosen so as to correctly execute the task

𝑀
𝑁 −𝑀

such that is nonsingular

𝑀 	×	𝑀

with

Robotics 2 35

𝑞 =
𝑞O
𝑞R

𝐽!(𝑞) =
𝜕𝑓
𝜕𝑞!

𝜕𝑔
𝜕𝑞"

= −
𝜕𝑓
𝜕𝑞!

$% 𝜕𝑓
𝜕𝑞"

= −𝐽!$%(𝑞)𝐽"(𝑞)

Reduced Gradient (RG)

n 𝐻(𝑞) = 𝐻(𝑞𝑎, 𝑞)) = 𝐻(𝑔(𝑟, 𝑞)), 𝑞𝑏) = 𝐻′(𝑞𝑏), with 𝑟 at current value

n the Reduced Gradient (w.r.t. 𝑞𝑏 only, but still keeping the effects of this
choice into account) is

n algorithm

Robotics 2 36

is a “compact”
(i.e., 𝑁 − 𝑀 dimensional)

necessary condition
of constrained optimality

∇D$𝐻
U = 0

∇D$𝐻
U = − 𝐽O()𝐽R $ 𝐼A(B ∇D𝐻

step in the gradient direction of
the reduced (𝑁 − 𝑀)-dim space

satisfaction of the 𝑀-dim
task constraints

�̇�. = ∇">𝐻
/

𝐽*�̇�* + 𝐽)�̇�) = �̇�

�̇�0 = 𝐽01% �̇� − 𝐽.�̇�.

(≠ ∇D$𝐻 only!!)

Comparison between PG and RG
n Projected Gradient (PG)

n Reduced Gradient (RG)

n RG is analytically simpler and numerically faster than PG, but
requires the search for a non-singular minor (𝐽O) of the robot
Jacobian

n if 𝑟	= cost & 𝑁 −𝑀 = 1 ⇒ same (unique) direction for �̇�, but
RG has automatically a larger optimization step size

n else ⇒ RG and PG methods provide always different evolutions

Robotics 2 37

�̇� = 𝐽#�̇� + 𝐼 − 𝐽#𝐽 ∇D𝐻

�̇� = �̇�O
�̇�R

= 𝐽O()
0

�̇� + −𝐽O()𝐽R
𝐼

− 𝐽O()𝐽R $ 𝐼 ∇D𝐻

Analytic comparison
PPR robot

𝑞1 𝑞2

𝑞3

Robotics 2 38

𝑙
𝐽 = 1 0 −𝑙𝑠h

0 1 𝑙𝑐h
= 𝐽! 𝐽" 𝑞! =

𝑞%
𝑞+ 𝑞" = 𝑞h

RG: �̇� = 𝐽2%!
0

�̇� + −𝐽2%!𝐽3
𝐼

− 𝐽2%!𝐽3 4 𝐼 ∇5𝐻

�̇� =
1 0
0 1
0 0

�̇� +
𝑙𝑠h
−𝑙𝑐h
1

𝑙𝑠h −𝑙𝑐h 1 ∇S𝐻

PG: �̇� = 𝐽#�̇� + 𝐼 − 𝐽#𝐽 ∇3𝐻

𝐽# =
1

1 + 𝑙+
1 + 𝑙+𝑐h+ 𝑙+𝑠h𝑐h
𝑙+𝑠h𝑐h 1 + 𝑙+𝑠h+
−𝑙𝑠h 𝑙𝑐h

𝐼 − 𝐽#𝐽 =
1

1 + 𝑙+

𝑙+𝑠h+ 𝑙+𝑠h𝑐h 𝑙𝑠h
𝑙+𝑠h𝑐h 𝑙+𝑐h+ −𝑙𝑐h
𝑙𝑠h −𝑙𝑐h 1

always < 1!!

Joint range limits

S

G

numerical comparison among pseudoinverse (PS),
projected gradient (PG), and reduced gradient (RG) methods

task:
E-E linear path

from S to G

Robotics 2 39

initial configuration

−90° ≤ 𝜃, ≤ 90°

⇔

−90° ≤ 𝑞, − 𝑞,() ≤ 90°absolute ⇔ relative
coordinates

𝑞 =
1 0
1 1

0 0
0 0

1 1
1 1

1 0
1 1

𝜃 = 𝑇𝜃

𝜃 =
1 0

−1 1
0 0
0 0

0 −1
0 0

1 0
−1 1

𝑞 = 𝑇("𝑞

𝑞1

𝑞2
𝑞4

Numerical results
minimizing distance from mid joint range

joint 1 joint 2

joint 3 joint 4

Robotics 2 40

upper
limit

steps of numerical simulation

Numerical results
self-motion for escaping singularities

𝑟	º	0

RG is faster than PG
(keeping the same accuracy on 𝑟)

(optimal)
this function is NOT

the manipulability index,
but has the same minima (= 0)

Robotics 2 41

max𝐻 𝑞 =\
.4-

5

sin+ 𝑞.6- − 𝑞.

(almost singular)

steps of numerical simulation
8.

Task augmentation methods
n an auxiliary task is added (task augmentation)

𝑓-(𝑞) = 𝑦
 corresponding to some desirable feature for the solution

n a solution is chosen still in the form of a generalized inverse

 or by adding a term in the null space of the augmented
Jacobian matrix 𝐽𝐴

3

𝑆 𝑆 ≤ 	𝑁 −𝑀

Robotics 2 42

�̇� = 𝐾.(𝑞)�̇�.

𝑁

𝑀 + 𝑆𝐽𝐴𝑟b =
𝑟
𝑦 =

𝑓(𝑞)
𝑓c(𝑞)

�̇�b =
𝐽(𝑞)
𝐽c(𝑞)

�̇� = 𝐽b(𝑞)�̇�

Augmented task
example

𝑟(𝑡)

𝑁 = 4,𝑀 = 2

𝑓-(𝑞) = 𝑞/ = p/2	 (𝑆 = 1)
last link is to be held vertical…

absolute joint coordinates

Robotics 2 43

Augmenting the task …

n advantage: better shaping of the inverse kinematic solution

n disadvantage: algorithmic singularities are introduced when

r(𝐽) = 𝑀 r(𝐽c) = 𝑆	 but r(𝐽b) < 𝑀 + 𝑆

to avoid this, it should be always

difficult to be obtained globally!
rows of 𝐽 AND rows of 𝐽𝑦

are all together linearly independent

Robotics 2 44

ℛ 𝐽' ∩ ℛ 𝐽2' = ∅

Extended Jacobian (𝑆 = 𝑁-𝑀)

n square 𝐽𝐴: in the absence of algorithmic singularities, we can choose

n the scheme is then repeatable
n provided no singularities are encountered during a complete task cycle*

n when the 𝑁 − 𝑀 conditions 𝑓l(𝑞) = 0	correspond to necessary (and
sufficient) conditions for constrained optimality of a given objective
function 𝐻(𝑞) (see RG method, slide #36), this scheme guarantees that
constrained optimality is locally preserved during task execution

n in the vicinity of algorithmic singularities, for the simultaneous
execution of the original task and the auxiliary task(s), one can use
the DLS method; however, both tasks will be affected by errors

Robotics 2 45

* there exists an unexpected phenomenon in some 3R manipulators having “generic” kinematics: the robot may sometimes perform a pose
 change after a full cycle, even if no singularity has been encountered during motion (see J. Burdick, Mech. Mach. Theory, 30(1), 1995)

�̇� = 𝐽.$%(𝑞)�̇�.

Extended Jacobian
example

𝑟(𝑡)

𝑦(𝑡)

MACRO-MICRO manipulator

4×4

Robotics 2 46

𝑁 = 4,𝑀 = 2

�̇� = 𝐽(𝑞), … , 𝑞d)�̇�
�̇� = 𝐽c(𝑞), 𝑞*)�̇�

𝐽. =
∗
∗
∗
0

Task Priority

n we first address the task with highest priority

n and then choose 𝑣% so as to satisfy, if possible, also the secondary
(lower priority) task

 the general solution for 𝑣% takes the usual form

𝑣+ is available for the execution of further tasks of lower (ordered) priorities

Robotics 2 47

if the original (primary) task �̇�% = 𝐽%(𝑞)�̇� has higher priority
than the auxiliary (secondary) task �̇�+ = 𝐽+(𝑞)�̇�

�̇� = 𝐽)#�̇�) + 𝐼 − 𝐽)#𝐽) 𝑣)

�̇�+ = 𝐽+�̇� = 𝐽+ 𝐽%#�̇�% + 𝐽+ 𝐼 − 𝐽%#𝐽% 𝑣% = 𝐽+ 𝐽%#�̇�% + 𝐽+𝑃%𝑣%

𝑣) = 𝐽*𝑃) # �̇�* − 𝐽* 𝐽)#�̇�) + 𝐼 − 𝐽*𝑃) # 𝐽*𝑃) 𝑣*

Task Priority (continue)

§ substituting the expression of 𝑣& in �̇�

possibly = 0

§ main advantage: highest priority task is ideally no longer affected
 by algorithmic singularities (error is restricted only to secondary task)

WITHOUT
task priority

task 1: follow —
task 2: keep third link

vertical

WITH
task priority

�̇� = 𝐽)#�̇�) + 𝑃) 𝐽*𝑃) # �̇�* − 𝐽* 𝐽)#�̇�) + 𝑃) 𝐼 − 𝐽*𝑃) # 𝐽*𝑃) 𝑣*
𝑃 𝐵𝑃 # = 𝐵𝑃 #

when matrix 𝑃 is
idempotent and symmetric

= 𝐽*𝑃) #

Robotics 2 48

