Robotics 1
Test 2 — December 17, 2009

Consider the robot in Figure 1, having four revolute joints. The Denavit-Hartenberg frames are
already placed, with frame 0 located at the intersection of the first and second joint axis. The

configuration shown corresponds (approximately) to 8 ~ (0 6x/10 = 67/10 )T [rad] (or,
equivalently, @ ~ ( 0 108 180 108 )T [deg]).

Let

Figure 1: A 4R spatial manipulator

the robot be in the configuration §* = ( 0 37/4 7 )T [rad], and set L = 1 [m] in the

following if you plan to work in a numerical way.
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. Obtain the 6 x 4 geometric Jacobian J(6%).

. Show that the following Cartesian linear/angular velocity vector is feasible:

2
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Determine the minimum norm joint velocity vector 6 realizing the above Cartesian velocity.

Compute the joint torque vector 7 that keeps the robot in static equilibrium when the
following Cartesian force/torque vector is applied from the environment to the end-effector:

(F' M")=(1 00 0 0 0).

Consider only the velocity v of point P. Verify whether the associated 3 x 4 Jacobian J1,(0)
is singular or not in the configuration 8*.

[120 minutes; open books]



Solution
December 17, 2009

The 4R spatial manipulator is made by the subset of first four joints of the DLR manipulator
considered in the textbook (p. 79, Fig. 2.29)!. However, the fourth (and last) reference frame is
different, due to the missing axes 5, 6, and 7. The Denavit-Hartenberg parameters are given in
Table 1 (the first three rows are those of Table 2.7 in the textbook, with d3 = L).
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Table 1: Denavit-Hartenberg parameters
The associated homogeneous transformation matrices are:
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The 6 x 4 geometric Jacobian

~( Jc(0)
0= ( 74(0) )

can be computed symbolically or numerically for a given configuration. We present first the general
symbolic derivation, and then a more direct numerical approach.

INote that in Fig. 2.29 the ®1, @2, and x3 axes are drawn in a wrong way. The associated Table 2.7 of DH
parameters is instead correct for the full 7R arm.



The 3 x 4 upper part Jy of the geometric Jacobian relates 6 to the velocity v of point P. It
can be obtained either by (analytic) differentiation of pg,, i.e., by computing this vector as

< Po4(6)

1

> ="YA,(01) "A2(02) 2A3(03) *A4(04) < (1) >

and obtaining then

JL(0) = Lpgz(@)’

or by the geometric formula
Jr(0) = ( 20 X Pos 21 XPos 22 XPoy 23 X (Pos — Po3) ),

where we used the fact that pyg = Py; = Py2 = 0 (the origins of frames 0, 1, and 2 coincide).
Thus, for deriving its explicit symbolic form we need
cos 0 sin By + cos 0y sin O, sin 64 + (sin 61 sin O3 + cos 61 cos O3 cos O3) cos b4
Doy = L | sinb; sin by + sin 0y sin O sin @4 — (cos 0y sin b5 — sin 01 cos b cos f3) cos by |

— €08 fg — cos 05 sin 04 + sin 05 cos O3 cos 04
and, when following the geometric construction, also

cos 01 sin 6, sin 04 + (sin 67 sin O3 + cos 07 cos O3 cos b3) cos O,
Pos — Po3 = L | sinby sin s sin by — (cos Oy sin @5 — sin Oy cos O cos f3) cos 04

— c0s 05 sin 04 + sin 6 cos O3 cos 0,4

as well as
0
zg = 0
1
0 sin 01
z1 = OR1(91) 0 = —C0891
1 0
0 cos 01 sin 6y
Z9 = OR1(91) 1R2(92) 0 = sin01 sin92
1 —cos by
0 — sin #7 cos 3 + cos 01 cos O sin O3
z3 = "Ri(01)'Ry(02)%2R3(03) | 0 | = cos 01 cos 03 + sin 67 cos O sin O3
1 sin 05 sin O3

Performing symbolic computations?, and factoring out the length L, we obtain

J@) =L-(Jex Jro Jos Jra ),

2When using the Matlab Symbolic Toolbox, take advantage of the simplify instruction to reduce the
length/complexity of terms.



where:
— sin 0 sin 3 — sin 6 sin 6, sin 04 + (cos 01 sin O3 — sin Oy cos O3 cos b3) cos O
Jrpi = cos 07 sin 5 + cos 0y sin O, sin 04 + (sin 6 sin O3 + cos 61 cos O3 cos O3) cos b4

0

cos 01 (cos 02 + cos O3 sin 4 — sin O3 cos b5 cos )
Jro = sin 61 (cos B 4 cos O sin B, — sin O cos O3 cos Oy)
sin f5 + sin 05 sin 64 + cos 65 cos 03 cos O,
(sin 61 cos B3 — cos 0 cos O sin f3) cos 04
Jrs= —(cos 61 cos B3 + sin 67 cos O3 sin f3) cos b4
— sin 05 sin 03 cos 04
cos 67 sin 05 cos 4 — (sin 61 sin O3 + cos 61 cos O3 cos O3) sin 4
Jra= sin 0 sin 65 cos 04 + (cos 7 sin O3 — sin 01 cos O3 cos O3) sin 64

— cos 5 cos 04 — sin 05 cos O3 sin 04

The 3 x 4 lower part J 4 of the geometric Jacobian, relating 6 to the angular velocity w of
frame 4, is given instead by

JaO)=(z0 z1 22 z3),
where the previous symbolic expressions for z;, i = 0,1, 2, 3, are used.
At this stage, the elements of the Jacobian matrix J(€) should be evaluated at the given
configuration
0°=(0 3n/4 7 = )T.
In this configuration, the end-effector (the origin of frame 4) is positioned along the axis of joint 1.

Alternatively (and in a much faster way for the problem at hand!), we may first evaluate
numerically the homogeneous transformations at the configuration 8, using in this case also L = 1,
and then perform all the required operations, including products of matrices and (vector) cross
products, so as to obtain the numerical value of the geometric Jacobian. The Matlab code is:

% configuration data

th1=0;
th2=3*pi/4;
th3=pi;
th4=pi;
L=1;

% homogeneous transformations

A1 = [cos(thl) O sin(thl) 0;
sin(thl) 0 -cos(thl) 0;
010 0;

000 1];
A2 = [cos(th2) O sin(th2) 0;

sin(th2) 0 -cos(th2) 0;



010 0;
000 1];

A3 = [cos(th3) 0 sin(th3) 0;
sin(th3) 0 -cos(th3) O0;
0100L;
000 1];

A4 = [cos(th4) -sin(th4) O L*cos(th4);
sin(th4) cos(th4) 0 L*sin(th4);
001 0;
000 1];

A12=A1%A2;

A13=A12%A3;

A14=A13%A4;

% geometric Jacobian

z0=[0 0 1]’;

z1=A1(1:3,3);
z2=A12(1:3,3);
z3=A13(1:3,3);
p0=[0 0 0]’;

p1=A1(1:3,4);
p2=A12(1:3,4);
p3=A13(1:3,4);
p4=A14(1:3,4);

J(1:3,1)=cross(z0,p4-p0);
J(1:3,2)=cross(zl,p4-pl);
J(1:3,3)=cross(z2,p4-p2);
J(1:3,4)=cross(z3,p4-p3);

J(4:6,1)=20;
J(4:6,2)=z1;
J(4:6,3)=22;
J(4:6,4)==23;
% end

Whatever approach is followed, one ends up with the following matrix (where L = 1, if we have



worked numerically):
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0 —ILV3Z 0 - g
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J() =

1 0 0

It can be seen that the rank of J1(6%) is 3, and thus the given configuration 6 is not singular
for this sub-Jacobian. By inspection of this matrix, the desired linear/angular velocity vector

( vl Wl )T is realized by choosing

Od(O —

[
(en)
&

~—
e

obtaining in fact

Moreover, one can see that the joint velocity vector 6, is the only one providing the desired
linear /angular velocity. Therefore, 84 is the minimum norm solution (with [|@4|| = 1.5811). As a
check, it can be verified that
# 1 n* () _ A
sty () =

where the pseudoinverse J#(0*) can be computed either by using the Matlab function pinv or by
its explicit expression in case of a full (column) rank matrix J with more rows than columns,

J* = JTr) T,
which applies to the present case since the rank of J(6*) is 4. Finally, the joint torque vector 7

T
that balances the specified Cartesian force/torque vector ( FT M7t ) is computed as

0
Lv2
= 0 s

V2
L=

T =-J'(6)

OO OO O

i.e., it is given by the transpose of the first row of J(0"), changed of sign (the usual convention
holds also for joint torques: positive torques are counterclockwise).

Xk ok ok ok



