
Robotics 1
Midterm Test — November 15, 2023 [total 100 points]

Exercise 1 [10 points]

Consider the orientation obtained by a (partial) Euler sequence with a rotation of an angle α around z,
followed by a rotation of an angle β around the current y. Find three angles φ, χ, and ψ such that the
productRx(φ)Ry(χ)Rz(ψ) returns the same final orientation. Give the procedure for solving this problem
in general, determine the singular cases, and provide then a numerical value of the sought triple of angles
when α = π/4, β = −π/3 [rad]. Check the result.

Exercise 2 [10 points]

Let a first rotation be defined by an angle γ around x, followed by a rotation of an angle δ around the
unit vector v = (1/

√
2,−1/

√
2, 0) expressed in the original frame. Determine the resulting rotation matrix

R(γ, δ) in symbolic form. For a numerical case with γ = −π/2, δ = π/3 [rad], extract the invariant axis r
of the total rotation and the corresponding angle θ. Check the result.

Exercise 3 [10 points]

Consider the 2R planar robot in Fig. 1, with L1 = 1, L2 = 0.5 [m]. The joint variables have a limited
range: θ1 ∈ [0, π/2], θ2 ∈ [−π/2, π/2] [rad].

• Sketch the primary workspace of this robot, localizing the relevant points on its boundary.

• Indicate the region of the workspace where two inverse kinematics solutions exist.

• For each of the following five points, specify whether there are 0, 1, 2, or∞ inverse kinematics solutions:
P1 = (0.1, 1.5), P2 = (0.5, 1.3), P3 = (−0.4, 1.1), P4 = (1.0, 1.0), P5 = (1.0,−0.3) [m].
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Figure 1: A 2R planar robot.
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Figure 2: A 2R planar robot with D-H frames.

Exercise 4 [10 points]

Figure 2 shows an unusual but feasible choice of Denavit-Hartenberg (D-H) frames for a 2R planar
robot. Provide the corresponding D-H table of parameters and the direct kinematics of this robot
as an homogeneous transformation matrix 0T 2(q). Evaluate then this matrix in numerical form at
q∗ = (π/2,−π/2) [rad] and draw the robot in this configuration.

Exercise 5 [10 points]

The differential equations of a DC motor are given in slide #14 of the block 03 CompsActuators.pdf. With
the motor unloaded and starting from rest, if we apply a constant armature voltage v̄a, the motor will
start rotating and then reach a steady-state condition, with a constant angular velocity ω̄ and a constant
produced torque τ̄ . What are the expressions of ω̄ and τ̄ in terms of the system parameters and v̄a? If we
attach a load with inertia IL > 0 to the motor shaft through a transmission with reduction ratio nr > 1
and assume no dissipative terms on the load side, will the steady-state velocity of the motor change? And
what will be the velocity ωL of the load at steady state?
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Exercise 6 [20 points]

The 5R robot in Fig. 3 is shown in its zero configuration (i.e., for q = 0), with indication of the positive
joint rotations. Assign the D-H frames consistently with these specifications and fill the corresponding
table of parameters (specifying also the signs of the non-zero constant parameters). The origin of the last
D-H frame should be at point P . Evaluate then numerically the position and the orientation of the last
frame at q = 0, when all the non-zero kinematic lengths of the links are unitary.

P

x0

+

+

+

+

+

Figure 3: A 5R spatial robot at q = 0.

Exercise 7 [30 points]

Consider the planar RPR robot in Fig. 4, with the first and third joint revolute and the second prismatic.

a. Determine the task kinematics r = fr(q) for r = (p, φ), being p = (px, py) ∈ R2 the position of the
end-effector and φ ∈ (−π, π] its orientation angle with respect to x0 . [Hint: Use D-H joint variables.]

b. Solve analytically the inverse kinematics problem for rd = (pdx, pdy, φd) in the regular case only.

c. Let the RPR robot have the first and third links of unitary length. The pose of its base frame RF0 with
respect to the world frame RFw placed at the base of the 2R robot defined in Ex. 3 and shown in Fig. 1
is given by the homogeneous matrix

wT 0 =

(
wR0

wp0

0T 1

)
=


0.5 −0.8660 0 1

0.8660 0.5 0 3

0 0 1 0

0 0 0 1

 (1)

When the 2R robot is at θ = (0, π/2), find a configuration of the RPR robot with prismatic joint variable
q2 > 0 such that the end-effector of this robot has its position coincident with that of the 2R robot and
the approach direction of its gripper is specified by the unit vector wad = (0,−1, 0).

y0

x0

x3

y3

Figure 4: An RPR planar robot.

[240 minutes, open books]
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Solution
November 15, 2023

Exercise 1 [10 points]

The orientation R(α, β) obtained by the first two rotations is given by

R(α, β) = Rz(α)Ry(β) =

 cosα − sinα 0

sinα cosα 0

0 0 1


 cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ

 =

 cαcβ −sα cαsβ

sαcβ cα sαsβ

−sβ 0 cβ

 .

On the other hand, the orientation obtained by the Euler sequence XYZ with angles φ, χ, and ψ is

RXYZ(φ, χ, ψ) = Rx(φ)Ry(χ)Rz(ψ)

=

 1 0 0

0 cosφ − sinφ

0 sinφ cosφ


 cosχ 0 sinχ

0 1 0

− sinχ cosχ 0


 cosψ − sinψ 0

sinψ cosψ 0

0 0 1



=

 cχcψ −cχsψ sχ

cφsψ + sφsχcψ cφcψ − sφsχsψ −sφcχ
sφsψ − cφsχcψ sφcψ + cφsχsψ cφcχ

 .

We have to solve a standard inverse problem for this Euler sequence of angles to represent the rotation
matrix R(α, β):

RXYZ(φ, χ, ψ) = R(α, β). (2)

The only peculiarity is that the assigned rotation matrix is not (yet) given in numerical form at this stage,
but is parametrized by the two angles α and β. Denote the elements of matrix R(α, β) simply by Rij .
From the identities in the first row and last column of the matrices in (2) one obtains

χ = ATAN2

{
R13,±

√
R2

11 +R2
12

}
= ATAN2

{
cαsβ ,±

√
c2αc

2
β + s2α

}
We can solve then for the other two angles provided that R2

11+R2
12 = c2αc

2
β+s2α 6= 0, i.e., excluding singular

cases. Taking directly the + sign in the second argument of the above ATAN2 function (so that cχ > 0),
one has

φ = ATAN2

{
−R23

cχ
,
R33

cχ

}
= ATAN2 {−sαsβ , cβ}

and

ψ = ATAN2

{
−R12

cχ
,
R11

cχ

}
= ATAN2 {sα, cαcβ} .

When substituting the numerical values α = π/4 and β = −π/3, it is c2αc
2
β + s2α = 0.625 6= 0; thus, we

arein a regular case. The values of the three Euler angles are found then from the above expressions as

φ = 0.8861, χ = −0.6591, ψ = 1.1071 [rad].

Plugging these into (2), we verify that

RXYZ(φ = 0.8861, χ = −0.6591, ψ = 1.1071) = R(α = π/4, β = −π/3) =

 0.3536 −0.7071 −0.6124

0.3536 0.7071 −0.6124

0.8660 0 0.5

 .
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Exercise 2 [10 points]

The orientation obtained by the two rotations around x and v is given by

R(γ, δ,v) = Rv(δ)Rx(γ) =
(
vvT +

(
I − vvT

)
cos δ + S(v) sin δ

)
Rx(γ),

where the reverse order of the matrix product follows from the fact that both rotations are defined with
respect to fixed axes. Using the unit vector v = (1/

√
2,−1/

√
2, 0), one obtains the (semi-)symbolic matrix

R(γ, δ) =



cδ + 1

2

cδ − 1

2
cγ −

√
2

2
sγsδ −cδ − 1

2
sγ −

√
2

2
cγsδ

cδ − 1

2

cδ + 1

2
cγ −

√
2

2
sγsδ −cδ + 1

2
sγ −

√
2

2
cγsδ

√
2

2
sδ sγcδ +

√
2

2
cγsδ cγcδ −

√
2

2
sγsδ


.

For the considered numerical case, this matrix becomes

Rs = R(γ = −π/2, δ = π/3) =

 0.75 0.6124 −0.25

−0.25 0.6124 0.75

0.6124 −0.5 0.6124

 .

Being (Rs,12 −Rs,21)2 + (Rs,13 −Rs,31)2 + (Rs,23 −Rs,32)2 = 3.0499 6= 0, we are in a regular case and the
inverse relationships for the axis/angle representation of this matrix yield

r =

 −0.7158

−0.4938

−0.4938

 , θ = 1.0617 [rad].

and its opposite pair (−r,−θ). It is easy to check that Rr(θ) = R−r(−θ) = Rs.

Exercise 3 [10 points]

Figure 5 shows the primary workspace of the 2R planar robot with the given limits of the joint ranges.

xw

L1

L2

yw

r  = L2

Rmin = 𝐿!" + 𝐿""

r  = L2

Rmax = L1 + L2

Rmin = 𝐿!" + 𝐿""

2 IK 
solutions

1 IK 
solution

1 IK 
solution

A

B

C

D

E

F
always 1 IK 

solution
on the outer
boundary

P1

P4

P5

P3

P2

Figure 5: Primary workspace of the given 2R robot, with relevant points of interest.
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The robot is shown in its two limit configurations, at θ = (π/2, π/2) and at θ = (0,−π/2) [rad]. The
‘banana’-like workspace is limited by the four points A = (−L2, L1) = (−0.5, 1), B = (0, L1+L2) = (0, 1.5),
C = (L1 +L2, 0) = (1.5, 0), and D = (L1,−L2) = (1,−0.5) (all point coordinates are all expressed in [m]).
The inner boundary is an arc of a circle of radius Rmin =

√
L2

1 + L2
2 =
√

1.25 = 1.1180 [m], centered at the
origin. The outer boundary is composed by three arcs of circles, two of radius r = L2 = 0.5 [m], centered
respectively at (0, 1) (arc AB) and at (1, 0) (arc CD), and one of radius Rmax = L1 +L2 = 1.5 [m], centered
again at the origin. The workspace is symmetrically divided in three regions: there is only one solution to
the inverse kinematics (IK) in the regions ABF (right arm) and ECD (left arm), including their parts of
the workspace boundary, while there are two solutions (right and left arm) in the central area BCEF, with
E = (L1, L2) = (1, 0.5) and F = (L2, L1) = (0.5, 1), including the inner arc EF on the workspace boundary
and the two internal arcs BF and CE that limit this area. Finally, there is only one IK solution on the
outer boundary, including the arc BC (where the arm is outstretched).

As for the points Pi, i = 1, . . . , 5, it is easy to check that:

• the two points (marked in red) P1 = (0.1, 1.5) and P5 = (1.0,−0.3) are out of the workspace, since
‖p1‖

2 = 2.26 > 2.25 = R2
max and ‖p2‖

2 = 1.09 < 1.25 = R2
min;

• in P2 = (0.5, 1.3) and P4 = (1.0, 1.0) (marked in black) there are two IK solutions;

• there is only one IK solution in P3 = (−0.4, 1.1) (marked in green) —the right arm solution.

Exercise 4 [10 points]

The D-H parameters corresponding to the frame assignment for the 2R planar robot shown in Fig. 2 are
given in Tab. 1.

i αi ai di θi

1 π −L1 = −0.5 0 q1

2 −π/2 L2 = 0.6 0 q2

Table 1: D-H parameters corresponding to the frames in Fig. 2.

From the associated homogeneous transformation matrices

A1(q1) =


cos q1 sin q1 0 −L1 cos q1

sin q1 − cos q1 0 −L1 sin q1

0 0 −1 0

0 0 0 1

, A2(q2) =


cos q2 0 − sin q2 L2 cos q2

sin q2 0 cos q2 L2 sin q2

0 −1 0 0

0 0 0 1

,
one obtains

0T 2(q) = A1(q1)A2(q2) =


cos(q1 − q2) 0 sin(q1 − q2) −L1 cos q1 + L2 cos(q1 − q2)

sin(q1 − q2) 0 − cos(q1 − q2) −L1 sin q1 + L2 sin(q1 − q2)

0 1 0 0

0 0 0 1

 .

When q = q∗ = (π/2,−π/2) [rad], for L1 = 0.5 and L2 = 0.6 [m], we have

0T 2(q∗) =


−1 0 0 −0.6

0 0 1 −0.5

0 1 0 0

0 0 0 1

 .

This configuration of the 2R robot is shown in Fig. 6.
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L1 = 0.5

L2 = 0.6

x1

x2

z2

x0

y0

y1

𝑞! = 𝜋/2
𝑞" = −𝜋/2

(CW around z1, 
exiting the sheet)

∥	x0

(CCW around z0, 
entering the sheet)

Figure 6: The 2R planar robot of Fig. 2, shown in the configuration q∗ = (π/2,−π/2).

Exercise 5 [10 points]

The differential equations of a DC motor driven by an armature voltage va can be written in state-space
format, with the two state components x = (ia, ω) and the input u = va, as

dia
dt

= −Ra
La

ia −
kv
La

ω +
1

La
u

dω

dt
=

kt
Im

ia −
Fm
Im

ω − 1

Im
τload

(3)

having used1 the expressions of the back electromagnetic force vemf = kvω and of the output torque
produced by the motor τm = ktia. When there is no load attached to the motor shaft (τload = 0),
equations (3) become in matrix form

ẋ = Ax+ bu, A =

(
−Ra/La −kv/La
kt/Im −Fm/Im

)
, b =

(
1/La

0

)
.

From

det(λI −A) = det

(
λ+Ra/La kv/La

−kt/Im λ+ Fm/Im

)
= λ2 +

(
Ra
La

+
Fm
Im

)
λ+

1

LaIm
(RaFm + kvkt),

the two eigenvalues of A

λ1,2 = −1

2

(
Ra
La

+
Fm
Im

)
± 1

2

√(
Ra
La

+
Fm
Im

)2

− 4(RaFm + kvkt)

LaIm

have negative real part since all physical constants are positive. Thus, the system is asymptotically stable
and admits, in response to a constant input u = v̄a, a steady-state condition in which the angular velocity ω
and the armature current ia (and thus also the motor torque τm) are constant. The steady state x̄ = (̄ia, ω̄)
is computed by setting u = v̄a and ẋ = 0:

Ax̄+ bv̄a = 0 ⇒ x̄ = −A−1b v̄a ⇒


īa =

Fm
RaFm + kvkt

v̄a

ω̄ =
kt

RaFm + kvkt
v̄a.

(4)

1The two constants kv and kt are numerically equal when using SI units (kv = kt). They have been kept distinct
here for better clarity, also because we are working only symbolically.
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Accordingly, the torque produced by the motor at steady state is

τ̄m = kt īa = Fmω̄ =
Fmkt

RaFm + kvkt
v̄a.

Consider now an inertial load IL attached to the motor through a transmission with reduction ratio nr > 1.
Since the reflected load torque at the motor shaft is

τload =
1

nr
(ILω̇L) =

1

nr

(
IL

ω̇

nr

)
=
IL
n2
r

ω̇,

the second differential equation in (3) becomes

dω

dt
=

kt
I ′m

ia −
Fm
I ′m

ω, with I ′m = Im +
IL
n2
r

.

Therefore, the motor dynamics will have the same previous structure, now with a larger equivalent motor
inertia I ′m. The system is still asymptotically stable, with the two eigenvalues having a negative real part
smaller than before. In response to a constant v̄a, this implies a slower transient before reaching the
steady state. However, the steady-state velocity ω̄ of the motor will remain the same, as apparent from
its expression in (4) which is independent of Im (and thus of I ′m). Accordingly, the steady-state velocity
of the load will be

ω̄L =
ω̄

nr
=
kt
nr

v̄a
RaFm + kvkt

.

Exercise 6 [20 points]

The D-H frames for the 5R robot in Fig. 3 are uniquely specified as in Fig. 7, up to the arbitrary choice
of the direction of z5 (chosen here so that the last twist angle is α5 = 0).

P

x0

+

+

+

+

+
x1 = x2

z0

z1

z2

z3z4

z5

x3 = x4

x5

𝑑!

𝑑"

𝑑#

Figure 7: D-H frame assignment for the 5R robot of Fig. 3.

For i = 0, . . . , 4, the directions of the zi axes should guarantee a positive counterclockwise (CCW) rotation
that is consistent with the specifications in Fig. 3. Moreover, since the robot is shown at q = 0, all xi axes,
for i = 1, . . . , 5, should be aligned with x0 in this configuration. The only non-zero linear parameters are
d1 > 0 (displacement from O0 to O1 along z0), d3 < 0 (displacement from O2 to O3 along z2), and d5 > 0
(displacement from O4 to O5 = P along z4). The D-H parameters corresponding to this frame assignment
for the 5R robot are given in Tab. 2, for the shown configuration q = 0.
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The (long) symbolic expression of the pose of the end-effector frame RF5 is not requested explicitly by the
text of this exercise, although it can be easily obtained using the available symbolic manipulation codes
from the D-H table as

0T 5(q) = A1(q1)A2(q2)A3(q3)A4(q4)A5(q5) =

5∏
i=1

Ai(qi).

i αi ai di θi

1 π/2 0 d1 > 0 q1 = 0

2 π/2 0 0 q2 = 0

3 π/2 0 d3 < 0 q3 = 0

4 π/2 0 0 q4 = 0

5 0 0 d5 > 0 q5 = 0

Table 2: D-H parameters corresponding to the frames in Fig. 7.

In any event, its numerical evaluation at q = 0 for unitary lengths d1 = d5 = 1 and d3 = −1 (note this!)
leads to

0T 5(0) =


1 0 0 0

0 1 0 0

0 0 1 3

0 0 0 1

 .

Matrix 0T 5(0) could have been found also by visual inspection of Fig. 7. In fact, frame RF5 is oriented as
frame RF0 (thus 0R5(0) = I), while its origin is on the z0 axis at a distance D = d1 + |d3| + d5 = 3 [m]
from the origin O0.

Exercise 7 [30 points]

a. For describing the task kinematics associated to the end-effector of the RPR planar robot of Fig. 4, we
can use the natural definition of joint coordinates q = (q1, q2, q3) shown in Fig. 8.

y0

x0

x3

y3
x2y2

x1
z1

q1

q2

q3

a1

a3

Figure 8: A natural D-H frame assignment for the RPR planar robot of Fig. 4.
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We obtain

r =

 px

py

φ

 =


a1 cos q1 + q2 cos(q1 +

π

2
) + a3 cos(q1 + q3)

a1 sin q1 + q2 sin(q1 +
π

2
) + a3 sin(q1 + q3)

q1 + q3



=

 a1 cos q1 − q2 sin q1 + a3 cos(q1 + q3)

a1 sin q1 + q2 cos q1 + a3 sin(q1 + q3)

q1 + q3

 = fr(q). (5)

The same expression (5) can also be derived by following the D-H convention. The D-H parameters
associated to the frames defined in Fig. 8 are reported in Tab. 3.

i αi ai di θi

1 −π/2 a1 > 0 0 q1

2 π/2 0 q2 0

3 0 a3 > 0 0 q3

Table 3: D-H parameters corresponding to the frames in Fig. 8.

From the D-H table, computing the homogeneous transformations

A1(q1)=


c1 0 −s1 a1c1

s1 0 c1 a1s1

0 −1 0 0

0 0 0 1

, A2(q2)=


1 0 0 0

0 0 −1 0

0 1 0 q2

0 0 0 1

, A3(q3)=


c3 −s3 0 a3c3

s3 c3 0 a3s3

0 0 1 0

0 0 0 1

,
one obtains

0T 3(q) = A1(q1)A2(q2)A3(q3) =


c13 −s13 0 a1c1 − q2s1 + a3c13

s13 c13 0 a1s1 + q2c1 + a3s13

0 0 1 0

0 0 0 1

 ,

which is consistent with (5), once the absolute angle φ = q1 + q3 with respect to the x0 axis is extracted
from the rotation matrix 0R3(q).

b. The inverse kinematics problem for r = rd = (pdx, pdy, φd) is solved as follows. From the third equation
in (5) one has q1 + q3 = φd. Substituting this argument in the trigonometric functions within the first two
equations, one obtains (

pdx − a3cφd

pdy − a3sφd

)
=

(
a1c1 − q2s1
a1s1 + q2c1

)
. (6)

Squaring and summing these two equations yields

(pdx − a3cφd)2 + (pdy − a3sφd)2 = a21 + q22 ,

from which we have the two solutions for the prismatic joint

q
[+,−]
2 = ±

√
(pdx − a3cφd)2 + (pdy − a3sφd)2 − a21 = ±

√
p2dx + p2dy + a23 − 2a3(pdxcφd + pdysφd)− a21, (7)
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provided that the argument of the square root is strictly positive (regular case). If this argument is zero,
the two solutions collapse into one (singular case); if it is negative, there is no solution to the inverse

kinematics problem. In the regular case, for each of the two solutions q
[+]
2 and q

[−]
2 in (7) we proceed with

finding q1 through the solution of a linear system in the unknowns c1 and s1 obtained from (6):(
a1 −q2
q2 a1

)(
c1

s1

)
=

(
pdx − a3cφd

pdy − a3sφd

)
. (8)

Since the determinant of the matrix in (8) is a21 + q22 > 0, a solution (c1, s1) always exists and is unique.
Therefore, we have

q
[+,−]
1 = ATAN2

{
a1(pdy − a3sφd)− q[+,−]

2 (pdx − a3cφd), a1(pdx − a3cφd) + q
[+,−]
2 (pdy − a3sφd)

}
. (9)

Finally, the third joint variable is obtained as

q
[+,−]
3 = φd − q[+,−]

1 . (10)

Each of the two results (10) should be properly mapped into the interval (−π, π].

c. We have to solve an inverse kinematics problem for the RPR planar robot, where the input is partly
defined by the position of the end-effector of the 2R planar robot in Fig. 1. For this, in order to use the
results of the previous section b, one has to specify the input data rd = (pdx, pdy, φd) in the base frame
RF0 of the RPR robot (thus, 0rd =0 pTd

0φd)
T ). Note that, from the rotational part of matrix wT 0 in (1),

the frame RF0 is rotated by an angle β = π/3 around z0 with respect to frame RFw.

xw

𝜃2 = 𝜋/2

L1 = 1

L2 = 0.5

yw

y0

x0

a1 = 1

q1 = 2.8241

a3 = 1

q2 = 1.118

q3 = 0.8411

𝛽 = 	𝜋/3

y3

x3

𝜙! = −5π/6

𝑝" ! =	
−2.1651
−2.5

𝑝# ! =	
1
0.5

Figure 9: Solution of the inverse kinematics for the RPR robot performing the desired task.

Consider then the following two kinematic identities that hold for the required task.

1) Coincidence of the end-effector positions of the two robots RPR and 2R. This is expressed as

wT 0
0TRPR

3 (q)

(
0

1

)
= wT 2R

2 (θ)

(
0

1

)
.

Plugging in the given data for the 2R robot (θ = (0, π/2) [rad], L1 = 1 and L2 = 0.5 [m]), and using
eq. (1), we obtain
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(
0p3(q)

1

)
= 0TRPR

3 (q)

(
0

1

)
=w T−1

0
wT 2R

2 (0, π/2)

(
0

1

)
= wT−1

0


1

0.5
0
1

 =


−2.1651
−1.25

0
1

 =


pdx
pdy
0
1

.
2) Orientation in the plane of the approach vector 0xRPR

3 of the gripper (see Fig. 8). The angle φd is
extracted from

wR0
0RRPR

3 (q)

 1
0
0

 = wad.

Using wad = (0,−1, 0), one has

0x3(q) = 0RRPR
3 (q)

 1
0
0

 = wRT
0
wad =

 −0.8660
−0.5

0

 =

 cosφd
sinφd

0

 .

Thus, the orientation angle of 0x3 is given by φd = ATAN2 {−0.5,−0.8660} = −5π/6 = −2.6180 [rad].

The (two) configurations of the RPR robot that solve the task are obtained by substituting the obtained
data pdx, pdy, and φd into eqs. (7), (9), and (10), using also a1 = a3 = 1 [m]. The solution with a positive
value for the prismatic joint variable q2 is

q1 = 2.8241, q2 = 1.1180, q3 = 0.8411 [rad,m,rad]. (11)

The configurations of the RPR robot and of the 2R robot associated to this solution is shown in Fig. 9.

Note finally that a direct computation of the solution angle for the third joint as

q3 = φd − q1 = −2.6180− 2.8241 = −5.4421 [rad]

returns a value outside the interval (−π, π]. Instead, the correct value q3 ∈ (−π, π] in (11) is obtained,
e.g., using the MATLAB function below.

% This function yields an angle diff in the interval (−π, π]
% from the difference between two angles th d and th

% both defined in the interval (−π, π].

function diff=min angle(th d,th)
n d=[cos(th d), sin(th d), 0];
n=[cos(th), sin(th), 0];
n d3=[n d(1) n d(2) 0]; n3=[n(1) n(2) 0];
diff abs=acos(n*n d’); % always a positive angle between 0 and π
diff sign=cross(n,n d); % the third component gives the sign
if diff sign(3)>0,

diff=diff abs;
else

diff=-diff abs;
end

end

∗ ∗ ∗ ∗ ∗
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