
Robotics 1
Midterm Test — November 18, 2022

Exercise 1

Consider the rotation matrix

Rd =
1

3

 −2 2 −1

2 1 −2

−1 −2 −2

.
Find, if possible, all angle-axis pairs (θ, r) that provide the desired orientation Rd. At the end, check your
results by verifying that R(θ, r) = Rd.

Exercise 2

The end-effector of a robot undergoes a change of orientation between an initial Ri and a final Rf , as
specified by

Ri =


0 0.5 −

√
3

2
−1 0 0

0

√
3

2
0.5

, Rf =

 1 0 0

0 0 1

0 −1 0

.
Provide a minimal representation of the relative rotation between the initial and the final orientation using
YXY Euler angles (α1, α2, α3). At the end, check your solutions by performing the direct computation.

Exercise 3

A DC motor is used to move a link of length L = 0.7 [m], as
shown in Fig. 1. The motor mounts on its axis an absolute
encoder and uses as transmission elements an Harmonic Drive
having a flexspline with NFS = 160 teeth and a gear with two
toothed wheels of radius r1 = 2 and r2 = 4 [cm], respectively.

• Compute the reduction ratio nr > 1 of the transmission
system. Which is the direction of rotation of the link when
the motor angular position θm is turning counterclockwise?

• Determine the resolution of the absolute encoder that allows
distinguishing two link tip positions that are ∆r = 0.1 [mm]
away. What should be the minimum number of tracks Nt

of the encoder?

• If the link has an angular range ∆θmax = 180◦, how many
turns of the motor are needed to cover the entire range?
With a multi-turn absolute encoder, what is the minimum
number of bits for counting all these turns?

absolute encoder DC motor

length L

Ptip

qm

tm
Harmonic Drive

gears

q
radius r2

radius r1

link

Figure 1: The actuation arrangement of a
single link.

• If the motor inertia is Jm = 1.2 · 10−4 [kgm2], determine the optimal value of the link inertia Jl around
the axis at its base which minimizes the motor torque τm needed for a desired link acceleration θ̈. What
is then the value of τm (in [Nm]) for θ̈ = 7 [rad/s2]?

Exercise 4

A large 6R robot manipulator is mounted on the ceiling of an industrial cell and holds firmly a cylindric
object in its jaw gripper. The world frame RFw of the cell is placed on the floor, at about the cell center.
The robot base frame RF0 is defined by wT 0, while its end-effector frame RFe has the origin Oe at the
center of the grasped object. The robot direct kinematics is expressed in symbolic form by 0T e(q), in
terms of the joint variables q. A camera is placed in the cell and its frame RFc, having the origin Oc at
the center of the image plane and the zc unit vector along the focal axis of the camera, is defined by wT c.
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Figure 2: Definition of frames RFe and RFc for the considered task.

Figure 2 details the placement of the end-effector frame RFe and of the camera frame RFc. The robot
should hold the object in front of the camera, with the major axis of the cylinder aligned to the camera
focal axis and its center at a distance d > 0 from Oc. Define the task kinematics equation, to be solved
for the joint variables q, when the transformation matrices and the object-camera offset are given by

wT 0 =


1 0 0 −1

0 −1 0 1

0 0 −1 3.5

0 0 0 1

 , wT c =



1√
2

0 − 1√
2

2

0 −1 0 0

− 1√
2

0 − 1√
2

2

0 0 0 1

 , d = 1 [m].

Discuss also whether the robot is kinematically redundant for the task or not.

Exercise 5

For the spatial RPR robot of Fig. 3, complete the assignment of Denavit-Hartenberg (DH) frames and
fill in the associated table of parameters. The origin of the last frame should be placed at the point P .
Moreover, the frame assignment should be such that all constant DH parameters are non-negative and the
value of the joint variables qi, i = 1, 2, 3, are strictly positive in the shown configuration. Compute then
the direct kinematics p = f(q) for the position of point P .

P

x0

y0

L

H

Figure 3: A spatial RPR robot.

Exercise 6

For the spatial RPR robot of Fig. 3, provide the closed-form expression of the inverse kinematics for the
position p of point P . Assuming for simplicity that the joints have unlimited ranges, how many inverse
kinematics solutions are there in the regular case? Compute the numerical values of all inverse solutions q
when p = (3, 4, 1.5) [m] and the geometric parameters of the robot are H = L = 1 [m]. Check the solutions!

[180 minutes, open books]
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Solution
November 18, 2022

Exercise 1

It is easy to verify that Rd ∈ SO(3). Denoting by rij the elements of Rd, since the matrix is symmetric,
it is

sin θ =
1

2

√
(r12 − r21)2 + (r13 − r31)2 + (r23 − r32)2 = 0.

We are in a singular case for the inverse problem of extracting an angle and axis from a rotation matrix.
Moreover,

cos θ =
trace {Rd} − 1

2
= −1 ⇒ θ = π (or −π, which is the same angle).

Therefore, a solution exists for r and we shall use the special formulas

r =

 rx

ry

rz

 =


±
√
r11 + 1

2

±
√
r22 + 1

2

±
√
r33 + 1

2


=


± 1√

6

± 2√
6

± 1√
6

 =

 ± 0.4082

± 0.8165

± 0.4082

 ,

where the correct combinations of signs (among the 8 possibilities) should be determined so as to guarantee
that the remaining three equalities in Rd = 2rrT − I hold:

2 rxry = r12 =
2

3
, 2 rxrz = r13 = −1

3
, 2 ryrz = r23 = −2

3
.

By coding this logic, one obtains the two solutions

r1 =

 0.4082

0.8165

−0.4082

 , r2 =

 −0.4082

−0.8165

0.4082

 = −r1.

Using

R(θ, r) = rrT +
(
I − rrT

)
cos θ + S(r) sin θ,

we can check that R(θ, r1) = R(θ, r2) = Rd is satisfied.

Exercise 2

The relative rotation iRf between the initial orientation Ri and the final orientation Rf is computed as

iRf = RT
i Rf =


0 0 −1

0.5 −
√

3

2
0

−
√

3

2
−0.5 0

.
On the other hand, the rotation matrix associated to a minimal representation with YXY Euler angles
(α1, α2, α3) is given by

RYXY (α1, α2, α3) = RY (α1)RX(α2)RY (α3) =

=

 cosα1 0 sinα1

0 1 0

− sinα1 0 cosα1


 1 0 0

0 cosα2 − sinα2

0 sinα2 cosα2


 cosα3 0 sinα3

0 1 0

− sinα3 0 cosα3


=

 c1c3 − s1c2s3 s1s2 c1s3 + s1c2c3

s2s3 c2 −s2c3
−s1c3 − c1c2s3 c1s2 c1c2c3 − s1s3

,
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where the usual shorthand notation has been used (e.g., ci = cosαi). The inverse representation problem,
namely finding all triples (α1, α2, α3) of YXY Euler angles such that

R YXY (α1, α2, α3) = iRf , (1)

can be solved in closed form (up to singular cases). Denote by rij the elements of iRf . Taking advantage
of the simpler expressions in the second column (viz., second row) of R YXY , one has from eq. (1)

c2 = r22, s2 = ±
√
r212 + r232 ⇒ α2 = ATAN2 {s2, c2} ,

yielding the two (symmetric) values α
(I),(II)
2 = ±2.6180 [rad]. Since s2 = ± 0.5 6= 0, the problem at hand

is regular and computations can be carried out also for the other two angles. We have:

s1 =
r12
s2
, c1 =

r32
s2

⇒ α1 = ATAN2 {s1, c1} ,

and

s3 =
r21
s2
, c3 =

−r23
s2

⇒ α3 = ATAN2 {s3, c3} .

Depending on the sign chosen for s2, there are again two solutions for each angle. We obtain

α
(I)
1 = π, α

(II)
1 = 0 and α

(I)
3 =

π

2
, α

(II)
3 = −π

2
[rad].

As a result, the two (regular) solutions of the problem are:

α(I) =


π
5π

6
π

2

 =

 3.1416

2.6180

1.5708

, α(II) =


0

−5π

6

−π
2

 =

 0

−2.6180

−1.5708

 [rad].

It is easy to check that
RiR YXY (α(I)) = RiR YXY (α(II)) = Rf .

Exercise 3

The reduction ratio nr of the entire transmission is the product of the reduction ratios nHD of the Harmonic
Drive and ng of the spur gear:

nr = nHD · ng =
NFS

2
· r2
r1

= 80 · 2 = 160.

Both transmission elements invert on the output axis the direction of rotation of their input axis. As a
result, the angular position θ of the link is turning is the same direction (positive counterclockwise) of the
angular position θm of the motor.

A linear variation ∆r = 1 · 10−4 [m] in position at the tip of the link corresponds to an angular variation
∆θ at the base. Therefore, the needed resolution ∆θm at the motor side (where the absolute encoder is
mounted) is

∆θm = ∆θ · nr =
∆r

L
· nr = 1.4286 · 10−4 · 160 = 0.0229 [rad] (= 1.31◦).

Being the resolution of an absolute encoder equal to ∆ = 2π/2Nt , the request ∆ ≤ ∆θm implies that the
minimum number of tracks Nt is the integer

Nt =

⌈
log2

(
2π

∆θm

)⌉
= d8.1027e = 9.

In order to cover the entire range ∆θmax (in degrees) of link angular motion, the number of motor turns is

nturns =
∆θmax · nr

360◦ =
180◦ · 160

360◦ = 80.
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For counting this number of turns, the minimum number of devoted bits Nmt in a multi-turn absolute
encoder should be

Nmt = dlog2 80e = 7.

Finally, the optimal value of the link inertia Jl is computed from the optimal value of the reduction ratio:

nr =

√
Jl
Jm

⇒ Jl = Jm · n2
r = 1.2 · 10−4 · 1602 = 3.0720 [kgm2].

The motor torque τm needed for obtaining a desired link acceleration θ̈ = 7 [rad/s2] is then

τm = Jmθ̈m +
1

nr
Jl θ̈ =

(
Jmnr +

Jl
nr

)
θ̈ = (2Jmnr) θ̈ = 0.0384 · 7 = 0.2688 [Nm].

Exercise 4

The kinematic identity describing the task is given by

wT 0
0T e(q) = wT c

cT e, (2)

in which the desired pose of the robot end-effector in the world frame is equivalently expressed passing
through the robot or through the camera, respectively the left-hand side or the right-hand side of (2).
Since the unit axes ze and zc should be aligned and in the opposite direction (zc = −ze) and the offset
between Oc and Oe should be only along zc, an homogeneous matrix that defines the correct pose of the
end-effector, as seen from the camera frame1, is given by

cT e =


1 0 0 0

0 −1 0 0

0 0 −1 d

0 0 0 1

, with d = 1 [m]. (3)

Note that this choice is not unique: it corresponds to aligning also the xe unit vector of the end-effector
frame with the unit vector xc of the camera frame. However, such alignment is not necessary and one may
choose to have an arbitrary angle α ∈ (π, π] between these two vectors. As a result, also the more general
homogeneous matrix

cT e(α) =


cosα − sinα 0 0

− sinα − cosα 0 0

0 0 −1 d

0 0 0 1

, with d = 1 [m], (4)

satisfies the task2. Since there is one parameter left free of choice in defining a desired 3D pose, the task
is 5-dimensional and the 6R robot has one degree of redundancy in realizing this task (in fact, the task
involves positioning and pointing in 3D).

Given wT 0 and wT c, one obtains from (2) and (3)

0T e(q) = (wT 0)−1 wT c
cT e =



1√
2

0
1√
2

2.2929

0 −1 0 1
1√
2

0 − 1√
2

2.2071

0 0 0 1

,

1The same description holds as seen from the end-effector frame since in this case eT c = (cT e)−1 = cT e, due
to the task symmetry.

2With α = π, the unit vectors ye and yc would be aligned.
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which is the requested task kinematics equation to be solved for q (i,e., the formulation of the inverse
kinematics problem for the 6R robot). A similar equation is found when using (4) in place of (3).

Exercise 5

The (unique) DH frame assignment for the RPR robot of Fig. 3 satisfying all requests is shown in Fig. 4.
The corresponding DH parameters are reported in Tab. 1.

P

x0

y0

z0

x1
z1

x2

z2

x3

y3
z3

a3

d1

q2

q1

q3

Figure 4: DH frames for the spatial RPR robot.

i αi ai di θi

1 π/2 0 d1 = H > 0 q1 > 0

2 π/2 0 q2 > 0 π/2

3 0 a3 = L > 0 0 q3 > 0

Table 1: DH parameters corresponding to the frames in Fig. 4. The signs attributed to the joint variables
refer to the shown robot configuration.

From the associated homogeneous transformation matrices

A1(q1) =


c1 0 s1 0

s1 0 −c1 0

0 1 0 d1

0 0 0 1

, A2(q2) =


0 0 1 0

1 0 0 0

0 1 0 q2

0 0 0 1

, A3(q3) =


c3 −s3 0 a3c3

s3 c3 0 a3s3

0 0 1 0

0 0 0 1

,
we compute

phom =

(
p

1

)
= A1(q1)

(
A2(q2)

(
A3(q3)

(
0

1

)))
,

yielding the direct kinematics of the position of point P as

p = f(q) =

 s1 (q2 + a3s3)

−c1 (q2 + a3s3)

d1 + a3c3

. (5)
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Exercise 6

Consider the direct kinematics (5), with assigned desired values for the components px, py, and pz for the
position vector p on the left-hand side. From the third equation, one has

c3 =
pz − d1
a3

⇒ s3 = ±
√

1− c23.

Provided that c3 ∈ [−1, 1], two symmetric solutions are found for q3, each corresponding to a sign chosen
for s3:

q
(o)
3 = ATAN2 {|s3|, c3} , q

(i)
3 = ATAN2 {−|s3|, c3} = −q(o)3 . (6)

The solution q
(o)
3 has the forearm (link 3) bent outward from the base joint axis, while with q

(i)
3 the forearm

is bent inward. When c3 = ±1, the two solutions in (6) collapse into a singleton q3 = 0 (for c3 = 1, link
3 is vertical and points upward) or q3 = π (for c3 = −1, link 3 is vertical and points downward). These
two situations are a singularity for the solution q3. When |c3| > 1, the inverse kinematics problem has no
solution because the desired position p of point P is outside the reachable workspace of the robot.

Next, squaring and summing the first two equations in (5) yields

p2x + p2y = (q2 + a3s3)2 ≥ 0.

If this quantity is strictly positive, we can extract the root and substitute it in place of the common factor
in the right-hand side of the first two kinematic equations in (5) so as to obtain

px = ±s1
√
p2x + p2y, −py = ±c1

√
p2x + p2y,

which involve only the unknown q1 and the input data. Then, two solutions are obtained for q1,

q1 = ATAN2

{
px

±
√
p2x + p2y

,
−py

±
√
p2x + p2y

}
,

depending on the upper or lower sign chosen for the square root in both arguments (and independently from
the signs in the solution (6) for q3). Actually, since this computation is performed only when p2x + p2y > 0,
one can simplify the expression of the solutions as

q
(f)
1 = ATAN2 {px,−py} , q

(b)
1 = ATAN2 {−px,+py} . (7)

In the solution q
(f)
1 the base of the robot faces point P , whereas with q

(b)
1 the base is rotated by π and the

robot is giving the back to point P . If p2x + p2y = 0, i.e., the desired position of point P is on the axis of
joint 1, q1 is undefined and there are infinite solutions to the inverse kinematics problem (singular case).

Two possible ways can be followed to determine the variable q2 of the prismatic joint.

First method. Add the first two equations in (5), weighted respectively by s1 and −c1:

s1px − c1py = q2 + a3s3.

From this, using the previously obtained results for s1, c1 and s3, we have

q2 = s1px − c1py ∓ a3
√

1− c23 = ±
√
p2x + p2y ∓

√
a23 − (pz − d1)2. (8)

Note that the argument of the last square root in (8) is always non-negative (otherwise the desired position
p of point P would be outside the reachable workspace, as already noted). There are four combinations of
possible signs to be chosen in eq. (8), resulting in four solutions for q2 in the regular case, each corresponding
to one of the alternative solutions for q1 and for q3. When the solution for q3 is in singularity, meaning
that a23 = (pz − d1)2, only two solutions are left for q2. The same occurs when the solution for q1 is in
singularity (px = py = 0). At the intersection of the singularities, there is only one solution, namely q2 = 0.
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Second method. Square and sum all three equations in (5), after having moved d1 to the left in the third
one. This leads to

p2x + p2y + (pz − d1)2 = (q2 + a3s3)2 + (a3c3)2 = q22 + a23 + 2a3s3q2.

This is a polynomial equation of second degree in the unknown q2, which can be rewritten in the form

q22 + 2b q2 − c = 0,

with

b = a3s3 = ±
√
a23 − (pz − d1)2, c = p2x + p2y + (pz − d1)2 − a23.

Accordingly, we obtain two pairs of solutions (one pair for each sign chosen for b)

q
(++/+−)
2 = b±

√
b2 + c =

√
a23 − (pz − d1)2 ±

√
p2x + p2y

q
(−+/−−)
2 = −b±

√
b2 + c = −

√
a23 − (pz − d1)2 ±

√
p2x + p2y.

(9)

The two eqs. (9) are clearly equivalent to eq. (8). When b = 0, only two solutions are left. When b = c = 0
simultaneously, q2 = 0 is the only solution.

The four generic solutions in the regular case are summarized below, each having a sketch of the associated
robot configuration (the front part of the robot base, where z1 is pointing, is shown in dark blue).

q(1) =

 q
(f)
1

q
(+−)
2

q
(o)
3

 (base facing, forearm outward) q(2) =

 q
(f)
1

q
(++)
2

q
(i)
3

 (base facing, forearm inward)

x0

y0

P

z1

P

x0

y0

z1

q(3) =

 q
(b)
1

q
(−−)
2

q
(o)
3

 (base backing, forearm outward) q(4) =

 q
(b)
1

q
(−+)
2

q
(i)
3

 (base backing, forearm inward)

P

x0

y0

z1

x0

y0

P

z1
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Consider now the given numerical data. Since d1 = H = 1 and a3 = L = 1 [m], the four (regular) solutions
for p = (3, 4, 1.5) are:

q(1) =

 2.4981

4.1340

1.0472

, q(2) =

 2.4981

5.8660

−1.0472

, q(3) =

 −0.6435

−5.8660

1.0472

, q(4) =

 −0.6435

−4.1340

−1.0472

 [rad/m/rad].

∗ ∗ ∗ ∗ ∗
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