
Robotics I
Midterm classroom test – November 16, 2018

Exercise 1 [6 points]

The orientation of a rigid body is given in terms of the YXY Euler angles (↵,�, �) = (⇡/2,�⇡/4,⇡/4).
This orientation is the result of a rotation around the unit vector r =

�
1/
p
3 �1/

p
3 1/

p
3
�T

(expressed in the absolute frame) by an angle ⌘ = �30�. Which was the initial orientation of the
body? Is it uniquely defined? Express the solution (or solutions) for the initial orientation by a
rotation matrix R and in terms of XYZ Roll-Pitch-Yaw angles ( , ✓,�) around fixed axes.

Exercise 2 [2 points]

The following 4⇥ 4 matrix is given:

M =

0

BBB@

�0.7071 0.5 �0.5 �1

�0.7071 �0.5 0.5 �1

0 0.7071 0.7071 �0.7071

0 0 0 1

1

CCCA
.

Is it possible to generate M by a set of four Denavit-Hartenberg parameters (↵, a, d, ✓)? If so,
provide these values. If not, explain why.

Exercise 3 [8 points]

Consider the 7R manipulator in Fig. 1, where Denavit-Hartenberg (DH) frames have been defined
already (with axes xi in red, axes yi in green, and axes zi in blue). Ten reference frames are
shown in total, 8 of which are DH frames, plus one fixed frame attached with the base platform,
and a last one attached with a generic tool.

• On the extra sheet provided separately [to be returned with your name], complete the table of
DH parameters. Enter in the table only numerical values (expressed in [rad] or [m]), including
those of the joint variables q in the configuration shown. In the drawings, all data are given in
mm. Note the presence of o↵sets (equal to 45 mm) at the elbow of the arm.

• Provide numerically the transformation matrix BT 0 from the base frame to the DH frame 0.
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Figure 1: A 7R anthropomorphic manipulator.
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Exercise 4 [6 points]

A revolute joint of a robot is actuated by a DC motor driven by a controlled voltage Va in the
armature circuit. We know that the motor is characterized by the following data, respectively for
armature resistance, viscous friction, and current-to-torque gain parameters:

Ra = 0.309 [Ohm], Fm = 5 · 10�2 [mNm/(rad/s)], kt = 7.88 [mNm/A].

A harmonic drive reducer with a flexspline having 256 external teeth is used as a transmission
element for moving the link. At steady state, the output axis on the link side is rotating at an
angular speed ! = 180�/s in the counterclockwise direction.

• What is the value of the applied voltage Va in this situation? Pay attention to the SI units!

• Which is the rotation speed !m (with sign, in [rad/s]) of the rotor of the motor?

• If an incremental encoder with quadrature detection is used on the motor side, how many bits
should its internal counter use to obtain at least a resolution of ✏ = 10�3 [deg] on the link side?
How many pulses/turn should the optical disk have? How many pulses would be counted in
total by the counter in one second when the motor is rotating at the steady-state speed !m?
Would the counter go up or down?

Exercise 5 [8 points]

The kinematics of a planar RP robot is defined by the following Tab. 1 of DH parameters:

i ↵i ai di ✓i

1 �⇡/2 a1 = 0.2 [m] 0 q1

2 ⇡/2 0 q2 ⇡ [rad]

Table 1: DH parameters for a planar RP robot.

We would like to solve an inverse kinematics problem for this robot using an iterative numerical
method, either Newton or Gradient. The desired position the origin of the last frame in the

plane (x0,y0) is pd =
�
�2 �3

�T
[m]. At some iteration k, the algorithm drives the robot from

configuration qk to qk+1, with

qk =

✓
�1

2

◆
[rad, m], qk+1 =

✓
�2.7742

�0.6519

◆
[rad, m].

• Which is the solution method being used? Provide the symbolic expressions of each term in its
general formula and their numerical values at the given iteration k.

• If the method converges, what is the expected solution q⇤? In this robot configuration, what
will be the orientation of the last DH frame as expressed by the rotation matrix 0R2(q⇤)?

• In what configuration bq would the Gradient method certainly stop with a non-zero position error
for the above problem? What happens if we apply the Newton method there?

[240 minutes, open books]
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Solution of Midterm Test
November 16, 2018

Exercise 1

The orientation of a rigid body expressed in terms a sequence of YXY Euler angles (↵,�, �) is
represented by the rotation matrix

RY XY (↵,�, �) = RY (↵)RX(�)RY (�)

=

0

@
cos↵ 0 sin↵
0 1 0

� sin↵ 0 cos↵

1

A

0

@
1 0 0
0 cos� � sin�
0 sin� cos�

1

A

0

@
cos � 0 sin �
0 1 0

� sin � 0 cos �

1

A

=

0

@
cos↵ cos � � sin↵ cos� sin � sin↵ sin� cos↵ sin � + sin↵ cos� cos �

sin� sin � cos� � sin� cos �
� sin↵ cos � � cos↵ cos� sin � cos↵ sin� � sin↵ sin � + cos↵ cos� cos �

1

A .

Thus, the final orientation of the considered body is specified with respect to the absolute reference
frame as

0Rf = RY XY

⇣⇡
2
,�⇡

4
,
⇡

4

⌘
=

0

BB@

� 1
2 �

p
2
2

1
2

� 1
2

p
2
2

1
2

�
p
2
2 0 �

p
2
2

1

CCA =

0

B@
�0.5 �0.7071 0.5

�0.5 0.7071 0.5

�0.7071 0 �0.7071

1

CA .

Operatively, to obtain this result one can either evaluate numerically the symbolic matrix RY XY ,
or evaluate numerically the single elementary rotation matrices and then do their products.

The matrix associated to a rotation around an axis r by an angle ⌘ is given by

R(r, ⌘) = rrT +
�
I � rrT

�
cos ⌘ + S(r) sin ⌘.

Thus, the rotation that changes the initial to the final orientation of the body is specified as

0Ri,f = R
⇣�

1/
p
3 �1/

p
3 1/

p
3
�T

,�⇡
6

⌘

=

0

BB@

p
3+1
3

p
3�1
3

1
3

� 1
3

p
3+1
3

p
3�1
3

1�
p
3

3 � 1
3

p
3+1
3

1

CCA =

0

B@
0.9107 0.2440 0.3333

�0.3333 0.9107 0.2440

�0.2440 �0.3333 0.9107

1

CA ,

where the superscript 0 to Ri,f is there to indicate that the given rotation axis was expressed in
the absolute reference frame (i.e., 0r).

Since the two rotation matrices 0Rf and 0Rif are both defined with respect to the original reference
frame, we have for their composition the product order

0Rf = 0Ri,f
0Ri.

Thus, the initial orientation expressed by the rotation matrix 0Ri is computed as

0Ri =
0RT

i,f
0Rf =

0

B@
�0.1161 �0.8797 0.4612

�0.3416 0.4714 0.8131

�0.9326 �0.0632 �0.3553

1

CA .
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This initial orientation is indeed uniquely specified. To express this solution using the XYZ Roll-
Pitch-Yaw angles ( , ✓,�), we first compute symbolically the associated rotation matrix as

RXY Z( , ✓,�) = RZ(�)RY (✓)RX( )

=

0

@
cos� � sin� 0
sin� cos� 0
0 0 1

1

A

0

@
cos ✓ 0 sin ✓
0 1 0

� sin ✓ 0 cos ✓

1

A

0

@
1 0 0
0 cos � sin 
0 sin cos 

1

A

=

0

@
cos� cos ✓ cos� sin ✓ sin � sin� cos cos� sin ✓ cos + sin� sin 
sin� cos ✓ sin� sin ✓ sin + cos� cos sin� sin ✓ cos � cos� sin 
� sin ✓ cos ✓ sin cos ✓ cos 

1

A .

Next, we solve the inverse representation problem for

RXY Z( , ✓,�) =
0Ri.

Denote by Ri,j the elements of 0Ri. Since R2
3,2+R2

3,3 6= 0, we are in a regular situation. Therefore,
from

cos ✓ = ±
q
R2

3,2 +R2
3,3,

there are two solutions given by the angles (all given in [rad])

✓1 = ATAN2
n
�R3,1,

q
R2

3,2 +R2
3,3

o
= 1.2016

 1 = ATAN2

8
<

:
R3,2q

R2
3,2 +R2

3,3

,
R3,3q

R2
3,2 +R2

3,3

9
=

; = �2.9657

�1 = ATAN2

8
<

:
R2,1q

R2
2,1 +R2

3,3

,
R1,1q

R2
3,2 +R2

3,3

9
=

; = �1.8985

and
✓2 = ATAN2

n
�R3,1,�

q
R2

3,2 +R2
3,3

o
= 1.9400

 2 = ATAN2

8
<

:
R3,2

�
q

R2
3,2 +R2

3,3

,
R3,3

�
q
R2

3,2 +R2
3,3

9
=

; = 0.1759

�2 = ATAN2

8
<

:
R2,1

�
q

R2
2,1 +R2

3,3

,
R1,1

�
q
R2

3,2 +R2
3,3

9
=

; = 1.2431.

Exercise 2

The given 4 ⇥ 4 matrix M is indeed a homogeneous transformation matrix, since the upper left
3⇥3 block, say R, is a rotation matrix (i.e., it is an orthonormal matrix, with determinant = +1).
However, this is only a necessary condition for being able to express R only in terms of the two
DH angular parameters ↵ and ✓. Therefore, we attempt directly to solve the matrix equation
A(↵, a, d, ✓) = M , or
0

BBB@

cos ✓ � cos↵ sin ✓ sin↵ sin ✓ a cos ✓

sin ✓ cos↵ cos ✓ � sin↵ cos ✓ a sin ✓

0 sin↵ cos↵ d

0 0 0 1

1

CCCA
=

0

BBB@

�0.7071 0.5 �0.5 �1

�0.7071 �0.5 0.5 �1

0 0.7071 0.7071 �0.7071

0 0 0 1

1

CCCA
. (1)
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The following four values can be obtained (uniquely) from the analytic expressions

↵ = ATAN2 {M3,2,M3,3} = ATAN2 {0.7071, 0.7071} =
⇡

4

✓ = ATAN2 {M1,2,M1,1} = ATAN2 {�0.7071,�0.7071} = �3⇡

4

d = M3,4 = �0.7071 = �
p
2

2

a = M1,4 cos ✓ +M2,4 sin ✓ = (�1) · (�0.7071) + (�1) · (�0.7071) =
p
2.

It is easy to see that this set (↵, a, d, ✓) satisfies as identities also the remaining equations in (1).

Exercise 3

The robot shown in Fig. 1 is the Barrett Whole-Arm-Manipulator (WAM) with 7 revolute joints.
The assigned frames comply with the standard Denavit-Hartenberg convention. The associated
parameters are given in Tab. 2, with data expressed in [rad] or [m] and with the numerical values
of the joint variables q taken in the configuration shown (the ‘straight up’ configuration is in fact
the zero configuration for this arm). See also the compiled extra sheet at the end of the solution.

i ↵i ai di ✓i

1 �⇡/2 0 0 q1 = 0

2 ⇡/2 0 0 q2 = 0

3 �⇡/2 0.045 0.55 q3 = 0

4 ⇡/2 �0.045 0 q4 = 0

5 �⇡/2 0 0.3 q5 = 0

6 ⇡/2 0 0 q6 = 0

7 0 0 0.06 q7 = 0

Table 2: Parameters associated to the DH frames in Fig. 1.

From the sheet, one determines also the transformation matrix from base frame to DH frame 0 as

BT 0 =

0

BBB@

1 0 0 0.220

0 1 0 0.140

0 0 1 0.346

0 0 0 1

1

CCCA
.

Exercise 4

The dynamic equations of a DC motor in the time domain are known to be

La
dia
dt

= Va �Raia � Vemf , with Vemf = kv !m, (electrical balance)

Im
!m

dt
= Tm � Fm!m � Tload, with Tm = kt ia. (mechanical balance)

(2)

5



Assume no disturbance load, Tload = 0. When the rotor of the motor is rotating at a constant
angular velocity1 !̄m, we have the steady-state conditions

V̄a = Raīa + kv!̄m, T̄m = ktīa = Fm!̄m, (3)

which are obtained by setting to zero the two time derivatives in (2). The motor needs to apply
a torque T̄m (and thus deliver a steady-state armature current īa) to compensate for the energy
dissipation due to the viscous friction term Fm!̄m at constant angular velocity. The steady-state
input voltage V̄a will then balance the constant back emf kv!̄m and produce also the required
current īa flowing through the armature resistance Ra.

Special care should be taken for the numerical equivalence between the back emf coe�cient kv and
the current-to-torque gain kt of the motor. Based on the conservation of energy principle, we have

kv [V/(rad/s)] = kt [Nm/A]

only when using the indicated SI units. Therefore, in our case we will have

kt = 7.88 [mNm/A] = 7.88 · 10�3 [Nm/A] ) kv = 7.88 · 10�3 [V/(rad/s)]. (4)

The harmonic drive (HD) has a reduction ratio n > 1 and transforms input angular velocities !m

of the motor into output angular velocities ! of the link as

n =
Nflex

2
=

256

2
= 128, !m = �n!, (5)

where the minus sign denotes the inversion in the rotation direction due to the HD reducer.

When the link is rotating at steady state with an angular velocity !̄ = 180�/s = ⇡ rad/s (posi-
tive, being a counterclockwise rotation), combining eqs. (3) and (5) and keeping into account the
conversion (4), we obtain the numerical results

!̄m = �n !̄ = �128 · ⇡ = �402.1239 [rad/s] (clockwise!)

īa =
Fm

kt
!̄m

✓
= �Fm

kt
n !̄

◆
= �5 · 10�2

7.88
128⇡ = �2.5515 [A],

V̄a = Raīa + kv!̄m

✓
= �

✓
RaFm

kt
+ kv

◆
n !̄

◆

= �0.309 · 2.5515� 7.88 · 10�3 · 402.1239 = �(0.7885 + 3.1687) = �3.9572 [V].

With a desired resolution ✏ = 10�3 [deg] on the link side of the transmission, we need an output
resolution of the incremental encoder on the motor side equal to

✏m =
�✓m
pulse

= n · ✏ = 128 · 10�3 [deg].

Thus, the internal counter of the incremental encoder should be able to count a number Np of
pulses/turn at least equal to

Np =

⇠
360

✏m

⇡
=

⇠
360

128
· 103

⇡
= 2813,

1An angular velocity is an angular speed with sign (positive if rotating CCW, as seen from the observation axis).
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which requires a minimum number Nb of bits for the digital counter equal to

Nb = dlog2(Np)e = 12.

On the other hand, thanks to the quadrature electronics, the minimum number Nd of pulses/turn
of the optical disk that guarantees the desired resolution is

Nd =

⇠
Np

4

⇡
= 704.

With this incremental encoder, when the motor is spinning at the steady-state angular velocity
!̄m, the total count of pulses by the digital counter in one second (without considering resets)
would then be

count =

�
|!̄m| · Np

2⇡

⌫
=

�
402.1239 · 2813

2⇡

⌫
= 180032.

The counter goes down, since the steady-state angular velocity of the motor is negative (the motor
rotates CW, while the link rotates CCW having a positive angular velocity).

Exercise 5

The direct kinematics of the planar RP robot is computed from the parameters in Tab. 1, using the
DH homogeneous transformation matrices (and keeping for the moment a1 as a symbolic term):

0A2(q) = 0A1(q1) 1A2(q2) =

0

BBB@

cos q1 0 � sin q1 a1 cos q1
sin q1 0 cos q1 a1 sin q1
0 �1 0 0

0 0 0 1

1

CCCA

0

BBB@

�1 0 0 0

0 0 1 0

0 1 0 q2
0 0 0 1

1

CCCA

=

0

BBB@

� cos q1 � sin q1 0 a1 cos q1 � q2 sin q1
� sin q1 cos q1 0 a1 sin q1 + q2 cos q1

0 0 �1 0

0 0 0 1

1

CCCA
=

✓ 0R2(q1) 0p2(q)

0T 1

◆
.

(6)

The planar position mapping of interest is given by the first two components of 0p2(q) in (6), i.e.,

p(q) =

✓
a1 cos q1 � q2 sin q1
a1 sin q1 + q2 cos q1

◆
. (7)

Di↵erentiating (7) with respect to q yields the 2⇥ 2 Jacobian matrix

J(q) =
@p(q)

@q
=

✓
�a1 sin q1 � q2 cos q1 � sin q1
a1 cos q1 � q2 sin q1 cos q1

◆
, (8)

which is nonsingular unless detJ(q) = �q2 = 0.

The underlying inverse kinematics problem considered for this robot requires to solve two nonlinear
equations, i.e.,

p(q) = pd )
✓

a1 cos q1 � q2 sin q1
a1 sin q1 + q2 cos q1

◆
=

✓
�2

�3

◆
, (9)

through the use of an iterative numerical method. A generic iteration step toward the solution is
presented, from a configuration qk to qk+1.

7



Since the Jacobian at qk is nonsingular (qk2 = 2 6= 0), the increment provided by the numerical
method used at iteration k

�qk = qk+1 � qk =

✓
�2.7742

�0.6519

◆
�
✓

�1

2

◆
=

✓
�1.7742

�2.6519

◆
[rad, m] (10)

could have been obtained in principle either by the Newton or by the Gradient method (the latter
with some step size ↵k > 0).

To verify if the Newton method was used, we evaluate the relevant quantities at qk (with a1 = 0.2):

ek = pd � p(qk) =

✓
�2

�3

◆
�
✓

1.7910

0.9123

◆
=

✓
�3.7910

�3.9123

◆
,

��ek
�� = 5.4477 (11)

J(qk) =

✓
�0.9123 0.8415

1.7910 0.5403

◆
. (12)

It is easy to see that

qk+J�1(qk)ek =

✓
�1

2

◆
+

✓
�0.2702 0.4207

0.8955 0.4562

◆✓
�3.7910

�3.9123

◆
=

✓
�1.6219

�3.1795

◆
6= qk+1 =

✓
�2.7742

�0.6519

◆
.

We conclude that the Newton method was not used. On the other hand, the increment given by
the Gradient method is

↵k J
T(qk)ek = ↵k

✓
�0.9123 1.7910

0.8415 0.5403

◆✓
�3.7910

�3.9123

◆
= ↵k

✓
�3.5484

�5.3038

◆
.

We note that the following two equalities

↵k

✓
�3.5484

�5.3038

◆
=

✓
�1.7742

�2.6519

◆
= �qk

are simultaneously satisfied when selecting ↵k = 0.5 as step size. Thus, the Gradient method was
used at iteration k.

The displacement �qk obtained by the Gradient method leads to a new Cartesian position error
ek+1 that has a smaller norm than the previous ek in (11):

ek+1 = pd�p(qk+1) =

✓
�2

�3

◆
�
✓

�0.4208

0.5366

◆
=

✓
�1.5792

�3.5366

◆
,
��ek+1

�� = 3.8731 <
��ek

��. (13)

The method is thus converging at this stage, although it may eventually require a reduction of the
step size in order to avoid the missing of a solution.

Indeed, we can also determine all solutions to the inverse kinematics problem (9) in a closed form.
For this, consider again the two nonlinear equations (7) of the direct kinematics. Squaring each
equation and summing yields after simplifications

p2x + p2y = a21 + q22 ,

and so

qa,b2 = ±
q
p2x + p2y � a21. (14)

8



The two solutions (14) for the prismatic joint are real and distinct i↵ kpk2 = p2x + p2y > a21 and

collapse into the same one for kpk2 = a21. This is in fact a singular case, and provides q2 = 0 as the
unique solution. For kpk2 < a21, the point in the plane (x0,y0) is out of the workspace (it belongs
to an inner circle of radius |a1| � 0).

Assume now that a1 6= 0 and that p belongs to the (primary) workspace of the RP robot. For
each solution (14), i.e., two in the regular case or only one, q2 = 0, in the singular case, reorganize
the direct kinematics as a linear system in the unknowns sin q1 and cos q1:

 
�qa,b2 a1

a1 qa,b2

!✓
sin q1
cos q1

◆
=

✓
px
py

◆
.

A unique solution for q1 can always be found for each value entered as q2. We obtain

qa,b1 = ATAN2
n
a1py � qa,b2 px, a1px + qa,b2 py

o
. (15)

Using the problem data (p = pd and a1 = 0.2), equations (14) and (15) provide the two solutions

qa =

✓
2.6091

3.6

◆
, qb =

✓
�0.6435

�3.6

◆
[rad, m].

At this stage, there is no simple argument that helps us in identifying which inverse kinematic
solution would be reached by the Gradient iterative method when continuing its evolution from
qk+1. Instead of guessing, we just provide the requested orientation of the last DH frame in the
two cases, as given by 0R2(q1) in eq. (6):

0R2(q
a
1 ) =

0

B@
0.8615 �0.5077 0

�0.5077 �0.8615 0

0 0 �1

1

CA , 0R2(q
b
1) =

0

B@
�0.8 0.6 0

0.6 0.8 0

0 0 �1

1

CA .

We determine next the configurations bq at which the Gradient method would certainly stop with
a non-zero position error for the problem (9) at hand. This requires the Jacobian J(bq) in (8) to
be singular and the position error vector be = pd � p(bq) to belong to the null space of JT (bq).
Therefore, rewrite the Jacobian transpose, the direct kinematics, and the position error in the
singularity bq2 = q2 = 0:

JT
0 (q1) = JT (q)|q2=0 =

✓
�a1 sin q1 a1 cos q1
� sin q1 cos q1

◆
,

p0(q1) = p(q)|q2=0 =

✓
a1 cos q1
a1 sin q1

◆
, e0(q1) = e(q)|q2=0 = pd � p0 =

✓
�2� a1 cos q1
�3� a1 sin q1

◆
.

The null space of JT
0 is spanned by a single basis vector

ker
n
JT

0 (q1)
o
= �

✓
cos q1
sin q1

◆
, 8�.

In order to find a suitable value of q1 such that e0 2 ker
n
JT

0

o
, we consider the simple linear

system in the unknowns sin q1 and cos q1, parametrized by the scalar �:
✓

�2� a1 cos q1
�3� a1 sin q1

◆
= �

✓
cos q1
sin q1

◆
) (� + a1)

✓
cos q1
sin q1

◆
=

✓
�2

�3

◆
.

9



This leads to two solutions (depending on the arbitrary sign —positive or negative— that the
factor (� + a1) can assume):

bq a
1 = ATAN2 {�3,�2} = �2.1588, bq b

1 = ATAN2 {3, 2} = 0.9828 [rad].

It is left to the reader to check that in both cases JT (bq)e(bq) = 0 (even if e(bq) 6= 0), resulting in
a stopping condition for the Gradient method. It is also very informative at this point to sketch a
picture of the robot arm in the configuration bq, and draw the error be associated to the considered
positioning task for the end e↵ector.

When such a situation is encountered, one can force the Gradient method to restart in many
possible ways, e.g., by slightly perturbing the current robot configuration so that the position
error e exits the null space of JT or, even better, by momentarily rotating the actual error e
(multiplying it by a skew-symmetric matrix Ks) so as to obtain the same e↵ect. On the other
hand, in a singular configuration (or very close to it) we can never apply the Newton method —at
least, not as such.

⇤ ⇤ ⇤ ⇤ ⇤
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Assignment of DH frames and table of parameters for the Barrett WAM 7R arm
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1 -p/2 0 0 q1 = 0
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