
Robotics 1
February 13, 2023

Exercise 1

Consider the planar RPPR robot in Fig. 1.
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Figure 1: A planar RPPR robot

• Assign the frames according to the standard Denavit-Hartenberg (DH) convention and provide
the corresponding table of parameters.

• Suppose that the two prismatic joints have a limited range: |qi| < D, i = 2, 3. Determine the
maximum possible distance ∆ of the end-effector point P from the origin of the base frame and
the robot configuration(s) q at which this value is attained.

Exercise 2

Given two different rotation matrices 0Rc and 0Rd, suppose that a minimal representation with
a set of ZYZ Euler angles α ∈ IR3 has been extracted from each matrix, i.e., αc and αd. Then,
the relative error between the two orientations can be defined as eα = αd−αc, i.e., the difference
between the values of these two sets of Euler angles. As an alternative, one can define the relative
rotation matrix cRd and extract from this matrix the same set of ZYZ Euler angles αcd ∈ IR3.

Is it true that eα = αcd holds? If you believe so, provide a simple proof of this result. If you don’t,
provide then a numerical counterexample (without any representation singularity).

Exercise 3

A planar 2R robot has its direct kinematics defined as

p =

(
px
py

)
=

(
l1c1 + l2c12
l1s1 + l2s12

)
= f(q), (1)

with link lengths l1 = 0.5, l2 = 0.4 [m]. Write a code that solves numerically the inverse kinematics
problem for this robot using Newton iterative method. For a desired position pd = (0.4,−0.3),
determine two different initial configurations q[0] so that the method converges in no more than
kmax = 3 iterations to the two inverse kinematics solutions, respectively qa and, qb, with a final
accuracy of at least ε = 10−4 on the norm of the Cartesian error e = pd−f(q). Provide the values
of q[k] for k = 0, 1, 2, 3 in the two situations, as well as the final values of the error norm ‖e‖.
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Exercise 4

The kinematics of a 4-dof robot manipulator is characterized by the DH parameters in Tab. 1.
Build the geometric Jacobian J(q) that relates the joint velocities q̇ ∈ IR4 to the six-dimensional
twist vector composed by a velocity v = v4 ∈ IR3 of the origin of the last (end-effector) DH frame
and by an angular velocity ω = ω4 ∈ IR3 of the same frame:(

v
ω

)
= J(q)q̇.

Correspondingly, the transpose of this matrix relates the six-dimensional end-effector wrench vector
composed by a force f = f4 ∈ IR3 applied at the origin of the last (end-effector) DH frame and
by a moment µ = µ4 ∈ IR3 applied on the same frame to the joint forces/torques τ ∈ IR4:

τ = JT(q)

(
f
µ

)
.

Find all the singular configurations of this Jacobian, i.e., all qs such that rank J(qs) < 4. At a
singular configuration qs, determine:

i) a basis for the joint velocities q̇ ∈ IR4 that produce no end-effector twists;

ii) a basis for the end-effector twists t ∈ IR6 that are not realizable;

iii) all non-zero end-effector wrenches w ∈ IR6 that are statically balanced by τ = 0 ∈ IR4.

Hint: It is convenient to work by expressing the geometric Jacobian in the DH frame RF1.

i αi ai di θi

1 π/2 0 0 q1

2 π/2 0 0 q2

3 −π/2 0 q3 0

4 0 a4 0 q4

Table 1: Table of DH parameters of a 4-dof robot.

[240 minutes, open books]
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Solution
February 13, 2023

Exercise 1

A possible assignment of standard DH frames for the considered RPPR robot arm is shown in
Fig. 2. The corresponding DH parameters are reported in Tab. 2.
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Figure 2: Assignment of DH frames for the RPPR robot in Fig. 1.

i αi ai di θi

1 π/2 0 0 q1

2 π/2 0 q2 π/2

3 π/2 0 q3 π/2

4 0 L 0 q4

Table 2: Table of DH parameters for the RPPR robot with frames assigned as in Fig. 2.

The position of point P in the plane (x0, y0) is

p =

(
q2s1 + q3c1 + Ls14
−q2c1 + q3s1 − Lc14

)
=

(
s1 c1
−c1 s1

)(
q2 + Lc4
q3 + Ls4

)
.

Thus, its distance from the origin of the base frame is

‖p‖ =
√
q22 + q23 + L2 + 2L (q2c4 + q3s4).

For |q2| ≤ D and |q3| ≤ D, the maximum distance is then easily evaluated as

∆ = max
q∈IR4: |qi|≤D, i=1,2

‖p‖ =

√√√√D2 +D2 + L2 + 2L

(
D

√
2

2
+D

√
2

2

)
=
√

2D + L,
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which is attained for

q2 = ±D, q3 = ±D, q4 = atan2 {q3, q2}
(

=

{
±π

4
,±3π

4

})
,

with an arbitrary value of q1. Four possible classes of solutions are obtained depending on the
combination of signs: q = (q1, D,D, π/4), q = (q1, D,−D,−π/4), q = (q1,−D,D, 3π/4), and
q = (q1,−D,−D,−3π/4).

Exercise 2

In general, the difference between the set of angles αc and αd of any minimal representation that
one can extract from two rotation matrices, respectively Rc and Rd, is different from the set
of angles αcd of the same minimal representation that are extracted from the relative rotation
matrix cRd = RT

c Rd. This is indeed true for any choice of angles α ∈ IR3 used for the minimal
representation of orientation. This result is due to the fact that the extraction of a minimal
representation from a rotation matrix is a nonlinear operation.

The choice of a counterexample in which eα 6= αcd with the ZYZ Euler angles is arbitrary, but
should keep in mind that the representation must not run into a singularity for any of the involved
rotation matrices. This means that the two elements (1,3) and (2,3) in last column of the matrices
Rc, Rd and cRd should not be simultaneously zero.

Consider for example the two elementary rotation matrices by π/4 around the x and z axes,

Rx =

 1 0 0

0
√
2
2

√
2
2

0 −
√
2
2

√
2
2

 , Rz =


√
2
2

√
2
2 0

−
√
2
2

√
2
2 0

0 0 1

 ,

and let

Rc = RxRz =


√
2
2

√
2
2 0

−0.5 0.5
√
2
2

0.5 −0.5
√
2
2

 , Rd = RzRx =


√
2
2 0.5 0.5

−
√
2
2 0.5 0.5

0 −
√
2
2

√
2
2

 .

From these, we obtain the relative orientation

cRd = RT
c Rd =

 0.8536 −0.25 0.4571

0.1464 0.9571 0.25

−0.5 −0.1464 0.8536

 .

All three matrices Rc, Rd and cRd satisfy the condition for not having a singularity in their ZYZ
Euler representation, i.e.,

sin θ = ±
√
R2

13 +R2
23 6= 0,

where Rij denotes an element of the various rotation matrices. Thus, we can extract the set of
angles α = (φ, θ, ψ) using the inverse relationships in the regular case:

θ = atan2 {sin θ,R33} , φ = atan2

{
R31

sin θ
,
R32

sin θ

}
, ψ = atan2

{
R13

sin θ
,
−R23

sin θ

}
.

As a result, for each rotation matrix we obtain two regular solutions, namely

αI
c =

 2.3562
0.7854
3.1416

, αII
c =

 −0.7854
−0.7854

0

; αI
d =

 3.1416
0.7137
2.3562

, αII
d =

 0
−0.7137
−0.7854

;
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and

αI
cd =

 1.8557
0.5121
3.1416

, αII
cd =

 −1.2859
−0.5121

0

.
The four possible errors between the Euler angles are1

eI,Iα = αI
d −αI

c =

 0.7854
−0.0717
−0.7854

, eI,IIα = αII
d −αI

c =

 −2.3562
−1.4991
−3.9270

,
eII,Iα = αI

d −αII
c =

 3.9270
1.4991
2.3562

, eII,IIα = αII
d −αII

c =

 0.7854
0.0717
−0.7854

.
As anticipated, none of these angular errors coincide with the two possible values of ZYZ Euler
angles αI

cd and αII
cd extracted from the relative rotation matrix cRd.

Exercise 3

From (1), the analytic Jacobian of the planar 2R robot is

J(q) =
∂f

∂q
=

(
− (l1s1 + l2s12) −l2s12
l1c1 + l2c12 l2c12

)
. (2)

The basic step of Newton method at the k-th iteration is

q[k+1] = q[k] + J−1(q[k])
(
pd − f(q[k])

)
, (3)

with inversion of the Jacobian and multiplication by the current position error e[k] = pd−f(q[k]).
In order to guarantee convergence, the method needs to be initialized with a configuration q[0] that
is close enough to a solution. A MATLAB code for the solution of the given inverse kinematics
(IK) problem using Newton method is reported further below (without output instructions).

For the initialization, based on the desired pd and on the link lengths of this robot, one can use
intuition to guess a configuration that is close enough to the ‘elbow up’ IK solution. For instance,
with the initial guess

q[0] =

(
40◦

−90◦

)
=

(
0.6981
−1.5708

)
[rad],

the method fails to converge with the desired error accuracy ε = 10−4 within the requested kmax = 3
iterations (i.e., after three evaluations of the basic step (3)). The final configuration at k = 3 is

q[3] =

(
0.1837
−1.9858

)
[rad] ⇒ f(q[3]) =

(
0.3999
−0.2980

)
6= pd ⇒ ‖e[3]‖ = 2 · 10−3 [m].

However, the final configuration that was reached gives a clue for a good new guess. With

q[0] =

(
20◦

−120◦

)
=

(
0.3491
−2.0944

)
[rad],

1While most of these angles take values in (−π, π], there are two angular errors exceeding this range, namely
3.9270 = π+ 0.7854 and −3.9270 = −π− 0.7854. Indeed, when defining an angular quantities over a 2π range, one
should organize error computations so as to lead to the smallest difference (in this case, ±0.7854). Even in this way,
the results for eα and αcd are different.
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the method converges in fact in k = 2 iterations, generating the solution

⇒ q[1] =

(
0.1736
−1.9961

)
⇒ q[a] = q[2] =

(
0.1797
−1.9824

)
[rad],

with a final norm of the Cartesian error ‖e‖ =
∥∥pd − f(q[a])

∥∥ = 7 · 10−5 m.

As for the ‘elbow down’ IK solution, the initial guess

q[0] =

(
−70◦

100◦

)
=

(
−1.2217

1.7453

)
[rad],

leads to convergence in exactly k = kmax = 3 iterations, generating the solution

⇒ q[1] =

(
−1.4589

2.0125

)
⇒ q[2] =

(
−1.4672

1.9826

)
⇒ q[b] = q[3] =

(
−1.4665

1.9823

)
[rad],

with a final norm of the Cartesian error ‖e‖ =
∥∥pd − f(q[b])

∥∥ = 9 · 10−8 m. Fig. 3 illustrates
the fast convergence rate (in fact, quadratic) of the method for the case of the ‘elbow down’ IK
solution: the norm of the error is plotted in logarithmic scale over iterations.
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Figure 3: Error convergence of Newton method for the ‘elbow down’ IK solution.

MATLAB code for Newton method

% robot data

l1=0.5;l2=0.4; %[m]

% desired task (end-effector position)

pd=[0.4;-0.3]; %[m]

% parameters in Newton method

% (final error tolerance and max number of iterations)

eps=0.0001; k max=3;

% two (alternative) initial guesses

q0=[20;-120]*pi/180; % for elbow up IK solution

%q0=[-70;100]*pi/180; % for elbow down IK solution
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% initialization

flag sol=0;

k=1;

q(:,k)=q0;

% main loop

while k<=k max,

f=[l1*cos(q(1,k))+l2*cos(q(1,k)+q(2,k));

l1*sin(q(1,k))+l2*sin(q(1,k)+q(2,k))];

e(:,k)=p d-f;

norm e(k)=norm(e(:,k));

if norm e(k)<=eps,

k sol=k;

q sol=q(:,k);

e sol=e(:,k);

norm e sol=norm(e(:,k));

flag sol=1;

break

else

J=[-(l1*sin(q(1,k))+l2*sin(q(1,k)+q(2,k))) -l2*sin(q(1,k)+q(2,k));

l1*cos(q(1,k))+l2*cos(q(1,k)+q(2,k)) l2*cos(q(1,k)+q(2,k))];

% core Newton step

q(:,k+1)=q(:,k)+inv(J)*e(:,k);

end

k=k+1;

end

Exercise 4

From Tab. 1, we compute the DH homogeneous transformations of this RRPR robot:

0A1(q1) =


c1 0 s1 0

s1 0 −c1 0

0 1 0 0

0 0 0 1

 =

( 0R1(q1) 0

0T 1

)
, 1A2(q2) =


c2 0 s2 0

s2 0 −c2 0

0 1 0 0

0 0 0 1

,

2A3(q3) =


1 0 0 0

0 0 1 0

0 −1 0 q3

0 0 0 1

, 3A4(q4) =


c4 −s4 0 a4c4

s4 c4 0 a4s4

0 0 1 0

0 0 0 1

.
The position of the end-effector (the origin of frame 4) follows as

p4,hom =

(
p4
1

)
= 0A1(q1)

1A2(q2)

2A3(q3)


a4c4
a4s4

0
1



 ⇒ p4 =

 c1 (q3s2 + a4c24)

s1 (q3s2 + a4c24)

−q3c2 + a4s24

.
(4)
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Since v = v4 = ṗ4, the linear part of the geometric Jacobian can be obtained by differentiation as

JL(q) =
∂p4
∂q

=

−s1 (q3s2 + a4c24) c1 (q3c2 − a4s24) c1s2 −c1a4s24
c1 (q3s2 + a4c24) s1 (q3c2 − a4s24) s1s2 −s1a4s24

0 q3s2 + a4c24 −c2 a4c24

 .

Setting z0 =
(

0 0 1
)T

, the angular part of the geometric Jacobian is computed as

JA(q) =
(
z0 z1 0 z3

)
=
(
z0

0R1(q1)z0 0 0R3(q1, q2, q3)z0

)
=

 0 s1 0 s1

0 −c1 0 −c1
1 0 0 0

.
Thus, the 6× 4 geometric Jacobian in the base frame is

0J(q) =

(
JL(q)

JA(q)

)
.

To simplify the following analysis, it is convenient to express the Jacobian in the rotated frame
RF1. We have

1J(q) = 0R̄
T
1(q1) 0J(q) =

(
0RT

1(q1) O

O 0RT
1(q1)

)
0J(q) =

(
0RT

1(q1)JL(q)
0Rv

1(q1)JA(q)

)

=



0 q3c2 − a4s24 s2 −a4s24
0 q3s2 + a4c24 −c2 a4c24

− (q3s2 + a4c24) 0 0 0

0 0 0 0

1 0 0 0

0 1 0 1


.

(5)

Even when the 6× 4 geometric Jacobian is full (column) rank, there exist always directions along
which no end-effector twists can be realized. When the range space of the Jacobian has dimension

dimR
(
1J(q)

)
= dimR

(
0J(q)

)
= 4,

being
R
(
1J(q)

)
⊕N

(
1JT(q)

)
= IR6,

it follows that the dimension of the complementary space is

dimN
(
1JT(q)

)
= 6− dimR

(
1J(q)

)
= 2.

In particular, a basis for such unfeasible twists is given by

N
(
1JT(q)

)
= span

{
1t1,

1t2

}
= span





0

0

1

0

q3s2 + a4c24

0


,



0

0

0

1

0

0




. (6)
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In order to evaluate the singular configurations of the robot manipulator, we compute

det
(
1JT (q) 1J(q)

)
= q23

(
(q3s2 + a4c24)

2
+ 1
)
.

Therefore, the singularities of the geometric Jacobian occur only when q3 = 0. Setting this value
in the rotated Jacobian, one has

1J(qs) = 1J(q)
∣∣
q3=0

=



0 −a4s24 s2 −a4s24
0 a4c24 −c2 a4c24

−a4c24 0 0 0

0 0 0 0

1 0 0 0

0 1 0 1


.

It is easy to see that rank 1J(qs) = 3. Thus, the null space of 1J(qs) is one-dimensional and
coincides with the null space of 0J(qs) (because we are operating on the columns of the matrix,
i.e., in the joint space, while products by RT

1 (q1) affect the rows). This null space is spanned by

N
(
0J(qs)

)
= span




0

−1

0

1


 .

Indeed, for any joint velocity q̇0 ∈ N
(
0J(qs)

)
, we have

0J(qs) q̇0 = 1J(qs) q̇0 = 1J(qs)


0

−α
0

α

 = 0, ∀α ∈ IR.

In order to determine all end-effector twists t ∈ IR6 that are not realizable at a singular config-
uration qs, we should find 6 − dimR

(
1J(qs)

)
= 3 independent columns to be appended to the

geometric Jacobian so that its rank will increase to its maximum possible value, namely 6. Work-
ing in the rotated frame, and following the same previous consideration about complementarity
spaces, it is easy to see that we can use the two twist directions in (6) —which are never realizable,
neither in a regular configuration nor in a singular configuration (where q3 = 0) — and add a third
independent column as follows

N
(
1JT(qs)

)
= span

{
1t1,

1t2,
1t3

}
= span





0

0

1

0

a4c24

0


,



0

0

0

1

0

0


,



c2

s2

0

0

0

a4s4




. (7)

Being outside the range space of 1J(qs), the three directions in (7) represent a basis for all gener-
alized end-effector twists that are not realizable at qs. When expressed in the base frame, these
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become

0t1 = 0R̄1(q1) 1t1 =



s1

−c1
0

0

0

a4c24


, 0t2 = 0R̄1(q1) 1t2 =



0

0

0

c1

s1

0


, 0t3 = 0R̄1(q1) 1t3 =



c1c2

s1c2

s2

a4s1s4

−a4c1s4
0


.

To determine all end-effector wrenches w ∈ IR6 for which the manipulator is statically balanced
at qs without the need of forces/torques τ ∈ IR4 at the joints, we need to determine a basis for
the null space of the transpose of the geometric Jacobian. However, such a basis has already been
computed. Therefore, when working in the rotated frame, we have

N
(
1JT(qs)

)
= span

{
1w1,

1w2,
1w3

}
= span

{
1t1,

1t2,
1t3

}
.

Similarly, when expressed in the base frame as 0wi = 0R̄1(q1) 1wi, for i = 1, 2, 3, these end-effector
wrenches are

0w1 = 0t1,
0w2 = 0t2,

0w3 = 0t3.

Indeed, for any end-effector wrench w0 ∈ N (JT(qs)), the balancing forces/torques at the joints is

τ = 0JT(qs)
0w0 = 1JT(qs)

1w0 = 0.

∗ ∗ ∗ ∗ ∗
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