
Robotics 1
January 23, 2023

Exercise 1

Figure 1 shows two views of TIAGo, a mobile manipulator by PAL Robotics. Disregard the wheeled
base and consider only the motion of the 8-dof robotic arm with respect to the on-board reference
frame RF0 as described hereafter. The first prismatic joint of the arm (with axis in blue/dashed)
provides elevation to the rest of the structure and is followed by 7 revolute joints (with axes in
red/dashed): the axes of joints #1 and #2 are parallel, joints #3 and #4 intersect at the shoulder,
joints #4 to #6 intersect at the elbow, while the last three joints (#6 to #8) constitute a spherical
wrist with center at W . Videos showing the TIAGo arm mobility can be seen on YouTube1.

Assign the kinematic frames to the arm links, following the classical Denavit-Hartenberg (DH)
convention. Draw clearly the frames and fill in the associated table of parameters using one (or
both) of the two extra sheets that have been distributed. Keep the frame RF0 as first DH frame,
and place the origin of the last DH frame at the wrist center point W.
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Figure 1: The TIAGo mobile manipulator, with the 8-dof arm shown in two configurations.

Exercise 2

Let the origin of frame RF0 of the TIAGo robotic arm be at a position wp0 = (1.5,−4.5, 0.3) [m]
with respect to a world frame RFw placed horizontally on the floor surface. Moreover, let the angle
between yw and y0 axes be φ = −45◦. With the TIAGo robotic arm in a generic configuration q,
use the formula that evaluates the position wpW of the wrist center W with the minimum number
of elementary operations. Provide then the symbolic expression of wpW (q) in explicit form.

1TIAGo - Robot Workspace versatility: https://youtu.be/6BwRqwD066g (1’08”); TIAGo - Gravity compensation:
https://youtu.be/EjIggPKy0T0 (1’23”).
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Exercise 3

For which interval of values of the angle θ2 ∈ (−π, π] does the transcendental equation

sin θ1 + 2 cos(θ1 + θ2) = 2 (1)

have real solutions for the angle θ1?

Exercise 4

For a 4-dof robot, consider the task vector

r = f(q) =

 q2 cos q1 + q4 cos(q1 + q3)

q2 sin q1 + q4 sin(q1 + q3)

q1 + q3

. (2)

Determine all singular configurations for the corresponding analytic robot Jacobian J(q). More-
over, find if possible:

• a joint velocity q̇0 6= 0 such that ṙ = 0 when the robot is in a regular configuration;

• all joint velocities q̇ such that ṙ = 0 when the robot is in a singular configuration;

• the direction(s) along which no task velocity can be realized when the robot is in the chosen
singular configuration;

• a generalized task force f0 6= 0 that is statically balanced by the joint torque τ = 0 when the
robot is in a regular configuration;

• all generalized task forces f that can be statically balanced by zero joint torque when the robot
is in the chosen singular configuration.

Exercise 5

The end-effector of a robot manipulator should follow an helical path p = p(s), parametrized by
the scalar s ≥ 0. The helix is right-handed, with radius r = 0.4 m and pitch 2πh, with h = 0.3 m,
starting from the position p0 = (0, 0, 2r) at s = 0. Its axis passes through the point C = (0, 0, r)
and is parallel to the y-axis. In the time interval t ∈ [0, T ], the robot end-effector should trace two
complete turns of the helix, starting and ending its (rest-to-rest) motion with zero velocity, i.e.,
with ṗ(0) = ṗ(T ) = 0.

Plan a timing law s = s(t) that minimizes the motion time T under the following bounds on the
norm of the velocity and on the (absolute) tangential and normal accelerations,

‖ṗ‖ ≤ V,
∣∣p̈T t∣∣ ≤ A, ∣∣p̈Tn∣∣ ≤ A, (3)

where t = t(s) and n = n(s) are the unit axes of the Frenet frame tangent and normal to the
path. Determine the minimum time T ∗ when V = 2 m/s and A = 4.5 m/s2. Sketch the profiles of
s(t), ṡ(t) and s̈(t) in the obtained time-optimal solution.

Consider next a spatial elbow-type 3R robot manipulator with its base on the plane z = 0, height
L1 = 0.8 m between base and shoulder, and length of the second and third link L2 = L3 = 1.5 m.
Determine a good placement (xb, yb) of the robot base, such that the complete helical path belongs
to the primary workspace of the robot and kinematic singularities are not encountered while the
end-effector is tracing the path.

[270 minutes, open books]
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Solution
January 23, 2023

Exercise 1

A possible conventional DH frame assignment for the TIAGo robotic arm is shown in Fig. 2. The
two views are used in order to better illustrate the assignment (which is indeed consistent in the two
pictures). The corresponding DH parameters are reported in Tab. 1. Note that x0‖x1 (θ1 = 0).
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Figure 2: Two views of the DH frames assigned to the TIAGo robotic arm.

The actual values of the constant DH parameters are:

a1 =
−−→
BO1 = 0.1557, a2 =

−−−→
O1O2 = 0.125, d4 =

−−−→
O3O4 = 0.3115, d6 =

−−−→
O5O6 = 0.312 [m].

Note that the above assignment may not correspond to the one used by the manufacturer (or in
URDF models). Also, very minor offsets exist at the elbow and at the shoulder of the robotic arm;
these offsets have been neglected in this exercise.
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i αi ai di θi

1 0 a1 q1 0

2 −π/2 a2 0 q2

3 −π/2 0 0 q3

4 −π/2 0 d4 q4

5 π/2 0 0 q5

6 −π/2 0 d6 q6

7 −π/2 0 0 q7

8 0 0 0 q8

Table 1: Table of DH parameters corresponding to the frames in Fig. 2.

Exercise 2

The direct kinematics of the robotic arm from RFw to RF8 using homogeneous transformation
matrices is

wT 8 (wp0, φ, q) = wT 0 (wp0, φ) 0T 8(q), (4)

with

wT 0 (wp0, φ) =


cosφ − sinφ 0 p0,x

sinφ cosφ 0 p0,y

0 0 1 p0,z

0 0 0 1

 =


1/
√

2 1/
√

2 0 1.5

−1/
√

2 1/
√

2 0 −4.5

0 0 1 0.3

0 0 0 1

 .

In general, the most efficient way for computing only the position of the origin O8 of the last DH
frame expressed in the reference frame RF0 is by the nested matrix-vector product

0p8,hom =

( 0p8
1

)
= 0A1(q1)

(
1A2(q2)

(
. . .

(
7A8(q8)

(
0

1

))
. . .

))
. (5)

In the present case, it is W = O8 = O7 = O6. Thus, the last column of the two matrices 6A7(q7)

and 7A8(q8) is simply
(
0T 1

)T
. Moreover, being the last column of matrix 5A6(q6) equal to(

0 0 d6 1
)T

, equation (5) simplifies to

0pW,hom =

( 0pW
1

)
= 0A1(q1)

1A2(q2)

2A3(q3)

3A4(q4)

4A5(q5)


0
0
d6

1





 . (6)

The symbolic outcome of (6) can be easily obtained adapting the MATLAB code for the direct
kinematics of a robot manipulator dirkin.m that is available on the web site of the course. Since

0A1(q1) =


1 0 0 a1

0 1 0 0

0 0 1 q1

0 0 0 1

, 1A2(q2) =


c2 0 −s2 a2c2

s2 0 c2 a2s2

0 −1 0 0

0 0 0 1

, 2A3(q3) =


c3 0 −s3 0

s3 0 c3 0

0 −1 0 0

0 0 0 1

,
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3A4(q4) =


c4 0 −s4 0

s4 0 c4 0

0 −1 0 d4

0 0 0 1

, 4A5(q5) =


c5 0 s5 0

s5 0 −c5 0

0 1 0 0

0 0 0 1

,

one obtains

0pW =

 a1 + a2c2 − d4c2s3 + d6 (s2s4s5 − c2s3c5 − c3c4s5)

a2s2 − d4s2s3 − d6 (s2s3c5 + c2s4s5 + c3c4s5)

q1 − d4c3 − d6 (c3c5 + s3c4s5)

. (7)

Finally, using (4) and keeping only the first three components of the result yields

wpW =


1.5 +

1√
2

(
a1 + (s2 + c2)(a2 − d4s3) + d6 ((s2 − c2)s4s5 − (s2 + c2)s3c5 − 2c3c4s5)

)
−4.5 +

1√
2

(
a1 + (c2 − s2)(a2 − d4s3) + d6 ((s2 + c2)s4s5 + (s2 − c2)s3c5)

)
0.3 + q1 − d4c3 − d6 (c3c5 + s3c4s5)

.
(8)

Exercise 3

This problem is solved by the algebraic transformation method used in inverse kinematics. Expand
the cosine function in (1) to get

sin θ1 + 2 (cos θ1 cos θ2 − sin θ1 sin θ2) = 2,

which is of the form
a sin θ1 + b cos θ1 = c, (9)

with
a = 1− 2 sin θ2, b = 2 cos θ2, c = 2.

The transcendental eq. (9) has already been studied in the lecture slides (InverseKinematics.pdf,
slide #13). From there, we know that this equation has (one or two) real solutions if and only if

a2 + b2 ≥ c2 ⇒ (1− 2 sin θ2)
2

+ 4 cos2 θ2 ≥ 4,

or
sin θ2 ≤ 0.25 ⇒ θ2 ∈ (−π, 0.2526] ∪ [π − 0.2526, π] [rad].

The range of admissible solutions for θ2, i.e., those providing a real solution θ1 to (1), is shown in
Fig. 3.

For instance, when θ2 = 0, eq. (1) becomes

sin θ1 + 2 cos θ1 = 2,

which has the two real solutions

θ+1 = 2 arctan

(
a+
√
a2 + b2 − c2
b+ c

)
= 2 arctan

(
1 + 1

4

)
= 2 arctan 0.5 = 0.9273 [rad],

θ−1 = 2 arctan

(
a−
√
a2 + b2 − c2
b+ c

)
= 2 arctan

(
1− 1

4

)
= 2 arctan 0 = 0.

5

http://www.diag.uniroma1.it/deluca/rob1_en/10_InverseKinematics.pdf


𝜋/2

1

𝜋

−𝜋/2

−𝜋 0

admissible
range for 𝜃&

sin 𝜃& = 0.25

Figure 3: Admissible range for θ2.

On the other hand, eq. (1) has a single solution when sin θ2 = 0.25. In particular, for θ2 = 0.2526
the equation becomes

0.5 sin θ1 + 1.9365 cos θ1 = 2,

with the single solution
θ1 = 0.2499 [rad].

Similarly, for θ2 = π − 0.2526 the equation becomes

0.5 sin θ1 − 1.9365 cos θ1 = 2,

with the single solution
θ1 = π − 0.2499 = 2.8917 [rad].

Exercise 4

The robot is a planar RPRP arm. The task vector r contains the (x, y) position of the end-effector
and the angle φ of the last link w.r.t. the x-axis. The analytic 3 × 4 Jacobian associated to the
task function in (2) is

J(q) =
∂f

∂q
=

 −q2s1 − q4s13 c1 −q4s13 c13

q2c1 + q4c13 s1 q4c13 s13

1 0 1 0

. (10)

Its singular configurations (corresponding to a loss of rank) are determined by computing

det
(
J(q)JT(q)

)
= 2q22 + 2s23 − q22s23. (11)

This determinant is zero if and only if q2 = 0 and s3 = 0 (q3 = 0 or π) simultaneously, because
cancelation between addends in (11) is ruled out. In fact, let a = s23 ∈ (0, 1]; setting the determinant
to zero would correspond to a value q22 = −2a/(2− a) < 0, which is impossible.

An alternative method for finding the singularities of the Jacobian would be to check the four
minors obtained by deleting one of its columns. Let J−i(q) be the 3 × 3 matrix obtained by
deleting column i from J(q), for i = 1, 2, 3, 4. Then

detJ−1(q) = −s3, detJ−2(q) = q2c3, detJ−3(q) = s3, detJ−4(q) = −q2.
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All minors should vanish at the same time, and this happens again if and only if q2 = 0 and s3 = 0.

In a generic regular configuration, the null space of J(q) is one-dimensional, i.e., it is generated
by a single vector q̇0 (scaled with any factor α ∈ R):

q̇0 ∈ N (J(q)) = span



−s3
−q2c3
s3
q2


 ⇒ J(q)q̇0 = 0.

In a singular configuration qs, the Jacobian becomes2

J(qs) = J(q)|q2=q3=0 =

 −q4s1 c1 −q4s1 c1

q4c1 s1 q4c1 s1

1 0 1 0

, (12)

which has rank equal to 2: the first two columns are independent for all q, the other two columns
are simply duplications. Thus, the null space of J(qs) is two-dimensional and a basis for all q̇ ∈ R4

such that J(qs)q̇ = 0 is

N (J(qs)) = span



−1

0

1

0

 ,


0

−1

0

1


.

Looking at the structure of the singular matrix in (12), the complementary space to the range
space R (J(qs)) along which no task velocity can be realized at qs is given by the single direction

ṙ⊥ =

 s1
−c1
q4

 ∈ R⊥(J(qs)) = N
(
JT(qs)

)
,

where the latter equality between subspaces follows from the decomposition of the three-dimensional
task space. In fact, all generalized task forces that can be statically balanced at qs by a zero joint
torque have the form

f = α

 s1
−c1
q4

, ∀α ∈ R ⇒ τ = JT(qs)f = 0.

Note that the unit of measure for the scalar α is in this case [N]. On the other hand, when the
Jacobian has full rank, i.e., has the form (10), the subspace N (JT(q)) contains only the null vector;
so, there is no f0 6= 0 in the null space of JT(q) in the regular case.

2A similar analysis holds for the singularity q2 = 0, q3 = π.
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Exercise 5

A parametrized description of the assigned helical path is given by 3

p = p(s) = C +

 r sin s

h s

r cos s

 =

 r sin s

h s

r (1 + cos s)

 , s ∈ [0, L], (13)

so that p(0) = p0 = (0, 0, r). Each of the two full turns is obtained by a variation of 2π for s. Thus,
the upper limit of the interval for s is L = 4π. Given this path, we need to specify a rest-to-rest
timing law s = s(t), with t ∈ [0, T ], that will trace it in minimum time T under the bounds (3).

From (13), by time differentiation (and use of the chain rule) we get

ṗ = p′ ṡ =

 r cos s

h

−r sin s

 ṡ, ‖p′‖ =
√
r2 + h2, (14)

and

p̈ = p′ s̈+ p′′ ṡ2 =

 r cos s

h

−r sin s

 s̈−

 r sin s

0

r cos s

 ṡ2, (15)

where a prime (′) denotes differentiation with respect to the parameter s. From (14), we obtain
the tangent axis t of the Frenet frame associated to the path,

t =
p′

‖p′‖
=

1√
r2 + h2

 r cos s

h

−r sin s

 . (16)

Differentiating t with respect to the parameter s gives

t′ = − 1√
r2 + h2

 r sin s

0

r cos s

 , ‖t′‖ =
r√

r2 + h2
, (17)

so that the normal axis n of the Frenet frame associated to the path is

n =
t′

‖t′‖
= −

 sin s

0

cos s

 . (18)

For checking the bounds on the components of the acceleration (15), we need to evaluate

p̈T t =
(
p′T t

)
s̈+

(
p′′T t

)
ṡ2 and p̈Tn =

(
p′Tn

)
s̈+

(
p′′Tn

)
ṡ2. (19)

3Equation (13) is not the only possible parametrization of this helix. For instance, one can also define

p(s) =

 r sin 2πs

2πh s

r (1 + cos 2πs)

 , s ∈ [0, 2],

with the parameter s being scaled down by 2π. The new final value s = 2 of the interval of definition corresponds
again to two full turns along the helix. Indeed, although the expressions are slightly different, all the following
results on trajectory planning remain the same.
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Being

p′T t =
√
r2 + h2, p′′T t = 0, p′Tn = 0, p′′Tn = r,

from (14) and (19), we have the bounds

‖ṗ‖ =
√
r2 + h2 |ṡ| ≤ V,

∣∣p̈T t∣∣ =
√
r2 + h2 |s̈| ≤ A,

∣∣p̈Tn∣∣ = r ṡ2 ≤ A,

or

|ṡ| ≤ vmax = min

{
V√

r2 + h2
,

√
A

r

}
, |s̈| ≤ amax =

A√
r2 + h2

. (20)

Using the numerical data, it is

vmax = min

{
2√
0.25

,

√
4.5

0.4

}
=

√
4.5

0.4
= 3.3541 m/s, amax = 9 m/s2.

The minimum-time rest-to-rest motion for moving the scalar path parameter s between s = 0 and
s = L = 4π under the bounds vmax > 0 for the speed and amax > 0 for the acceleration is a
bang-coast-bang (or bang-bang) acceleration profile. In the present case, there will be a rather
long coast phase since, by replacing the problem data,

12.5664 ≈ 4π = L >
v2max

amax
=

11.25

9
= 1.25.

Therefore, the minimum time is

T ∗ =
Lamax + v2max

amaxvmax
= 4.1192 s,

with acceleration/deceleration phases lasting Ts = vmax/amax = 0.3727 s. The time-optimal profile
of the parameter s and of its first two derivatives is shown in Fig. 4.
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Figure 4: The optimal timing law s(t), with speed and acceleration profiles.

As for the suitable positioning of the base of the spatial 3R manipulator, consider the bounding
box (a parallelepiped) containing the complete helical path shown in Fig. 5. The box size is
(∆x,∆y,∆z) = (2r × 4πh× 2r) = (0.8× 3.77× 0.8) [m], with one of the four large faces lying on
the plane z = 0 and one of the two (vertical) bases lying on the plane y = 0. The shoulder of the
robot is at the same level of the top face of the box.

The robot base will be conveniently placed at the midpoint Pb along one of the long sides of the
box, e.g., with (xb, yb) = (r, 2πh) = (0.4, 1.885) [m] (and zb = 0). In this way, the outreach
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of the second and third robot links (Lt = L2 + L3 = 3 m) starting from the shoulder point
Ps = (r, 2πh, L1) = (0.4, 1.885, 0.8) [m] will cover the entire bounding box. In fact, even the
farthest vertex Pv = (−r, 4πh, 0) = (−0.4, 3.77, 0) [m] of the box will have a distance from Ps

that is reachable, being ‖Pv − Ps‖ = 2.198 < 3 = Lt. The robot will certainly not encounter any
kinematic singularity during its motion: the forearm is never outstretched or folded and the base
joint axis is out of the box. Moreover, the path will never interfere with the base link of the robot,
which is outside the box.
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Figure 5: A box containing the helical path and a good placement of the 3R manipulator.
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