
Robotics I

June 10, 2022

Exercise 1

Consider the spatial 3R robot in Fig. 1.

x3

O3

x0

O0

joint 1

joint 2

joint 3

L

N

M

Figure 1: A spatial 3R robot.

• Assign a set of frames to this robot according to the Denavit-Hartenberg (D-H) convention and
provide the associated table of parameters. Keep the origins O0 and O3 and the axes x0 and x3
as shown in the figure, respectively in frame RF0 and frame RF3. Indicate also the signs taken
by the joint variables qi, i = 1, 2, 3, in the robot configuration shown in Fig. 1.

• Compute the direct kinematics for the position p = p3 of the end effector, i.e., the point O3.

• Draw accurately the primary workspace of this robot.

• Provide the 3× 3 Jacobian matrix J(q) of the robot in

v = ṗ = J(q)q̇,

and determine all the kinematic singularities, each with the associated rank of J(q).

• In a singularity qs where rankJ(qs) = 1, find an admissible end-effector velocity vs ∈ R3 and
a joint velocity q̇s ∈ R3 such that J(qs)q̇s = vs 6= 0. Is such q̇s unique for a given admissible
end-effector velocity vs?

Exercise 2

A planar RP robot is commanded at the acceleration level. Its end-effector position is given by

p = f(q) =

(
q2 cos q1

q2 sin q1

)
. (1)

If the robot is in a generic nonsingular configuration q and with non-zero velocities for both
joints, determine the explicit expression of a command q̈ such that the end-effector acceleration is
instantaneously p̈ = 0. Is this command unique?
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Exercise 3

Consider again the same RP robot of Exercise #2. Suppose that the generalized forces τ ∈ R2

that the robot actuators can provide at the two joints are bounded componentwise as

|τ1| ≤ τmax,1 = 10 [Nm], |τ2| ≤ τmax,2 = 5 [N].

In the configuration q = (π/3, 1.5) [rad,m], find the set of feasible Cartesian forces F = (Fx, Fy) ∈
R2 (expressed in [N]) which can applied to the end effector and that the robot can sustain while
in static equilibrium.

Exercise 4

The end-effector of a 2R planar robot with unitary link lengths has to track a linear path with
constant speed vd = 0.5 [m/s] between P 1 = (1, 0.5) and P 2 = (1, 1.5) [m]. However, at the initial
time t = 0, the end effector is positioned in P 0 = (0.5, 0.5) [m]. The robot is commanded by a
joint velocity q̇ that is limited componentwise as

|q̇1| ≤ Vmax,1 = 3 [rad/s], |q̇2| ≤ Vmax,2 = 2 [rad/s].

Design a kinematic control law that is able to achieve the fastest exponential convergence to zero
of the trajectory tracking error, uniformly in all Cartesian directions, while being still feasible in
terms of robot commands at time t = 0 for the given task. Provide some discussion on where/how
fast the return to the original trajectory will be achieved.

[180 minutes, open books]
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Solution

June 10, 2022

Exercise 1

A D-H frame assignment for the spatial 3R robot is shown in Fig. 2, with the associated table of
D-H parameters given in Tab. 1.

x0

z0

x1

z1

z2
x2

x3

y3

q1

q2

q3

L

M

N O3

O0

Figure 2: A D-H frame assignment for the spatial 3R robot of Fig. 1.

i αi ai di θi

1 0 L 0 q1 > 0

2 π/2 0 M q2 > 0

3 0 N 0 q3 > 0

Table 1: Table of D-H parameters associated to Fig. 2.

Based on Tab. 1, one can evaluate the D-H homogeneous transformation matrices i−1Ai(qi), for
i = 1, 2, 3. An efficient symbolic computation for obtaining the end-effector position p = p3(q)
makes use of recursive matrix-vector products in homogeneous coordinates as

(
p3(q)

1

)
= 0A1(q1)

(
1A2(q2)

(
2A3(q3)

(
0

1

)))
=


L cos q1 +N cos(q1 + q2) cos q3
L sin q1 +N sin(q1 + q2) cos q3

M +N sin q3
1

 =


px
py
pz
1

.
(2)

It is easy to verify that the following inequalities on the components of the position of the end
effector should necessarily hold

|L−N | ≤
√
p2x + p2y + (pz −M)2 ≤ L+N, M −N ≤ pz ≤M +N
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in order for p to belong to the primary (or reachable) workspace WS1 of the robot, namely the
set of all points in R3 that can be reached by the end-effector position. These inequalities are also
helpful for sketching WS1. As shown in Fig. 3, the workspace is in fact a solid torus parallel to the
(x0, y0) plane, with center at (0, 0,M), inner radius Rin = |L−N | and outer radius Rout = L+N .
Any vertical section of the 3D object with a plane passing though the origin is a circle of radius
r = N .
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Figure 3: The primary workspace of the spatial 3R robot of Fig. 1.

Differentiating the first three components in (2), we obtain v = ṗ = J(q)q̇ with the Jacobian

J(q) =
∂p(q)

∂q
=

 −Ls1 −Ns12c3 −Ns12c3 −Nc12s3
Lc1 +Nc12c3 Nc12c3 −Ns12s3

0 0 Nc3

 , (3)

where the compact notation for trigonometric functions has been used (e.g., s12 = sin (q1 + q2)).
The determinant of J(q) is

detJ(q) = LN2s2 c
2
3,

which is independent from q1 as it should be. Therefore, singularities occur when:

• s2 = 0 ⇐⇒ q2 = 0 or q2 = π: the three links live in the vertical plane (x1, z0).

The rank of the Jacobian is then always ρ(J) = 2, for all q3. This can be seen also more clearly
expressing the Jacobian in the rotated frame RF1. For instance, when q2 = 0 it is

J(q)|q2=0 =

 −s1(L+Nc3) −Ns1c3 −Nc1s3
c1(L+Nc3) Nc1c3 −Ns1s3

0 0 Nc3

 ,

1J(q)
∣∣
q2=0

= 0RT
1 (q1)J(q)

∣∣∣
q2=0

=

 0 0 −Ns3
L+Nc3 Nc3 0

0 0 Nc3

 .
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• c3 = 0 ⇐⇒ q3 = π/2 or q3 = −π/2: the third link is straight vertical. In this case, ρ(J) = 2,
for all q2 6= ±π/2. For instance, when q3 = π/2 it is

J(q)|q3=π/2 =

 −Ls1 0 −Nc12
Lc1 0 −Ns12
0 0 0

 , 1J(q)
∣∣
q3=π/2

=

 0 0 −Nc2
L 0 −Ns2
0 0 0

 .

• In particular1, when c3 = 0 and c2 = 0, the rank drops further to ρ(J) = 1. For instance, when
q2 = q3 = π/2 it is

J(q)|q2=q3=π/2 =

 −Ls1 0 Ns1

Lc1 0 −Nc1
0 0 0

 ⇒ R
{
J(q)|q2=q3=π/2

}
= span


 s1

−c1
0


 .

Consider now this last case, with qs such that q2 = q3 = π/2. In this singularity, any admissible
end-effector velocity vs, as well as the infinite set of joint velocities q̇s that will realize them, will
be of the form

vs = α

 s1

−c1
0

 , ∀α ⇒ q̇s =

 β

0

γ

 , with γN − βL = α.

Thus, for a given α, there will be infinite possible solutions q̇s. For instance, for α = 1, the joint
velocity solution with minimum norm2 and a generic second solution are

q̇s,1 = J#(q)
∣∣∣
q2=q3=π/2

vs =
1

L2 +N2

 −L0
N

 , q̇s,2 =
1

L

 −1

0

0

 .

Exercise 2

Differentiating eq. (1) once and twice w.r.t. time gives

ṗ =
∂f(q)

∂q
q̇ = J(q)q̇ =

(
−q2 sin q1 cos q1

q2 cos q1 sin q1

)
q̇

and

p̈ = J(q)q̈ + J̇(q)q̇ = J(q)q̈ +

(
−q2 cos q1 q̇

2
1 − 2 sin q1 q̇1q̇2

−q2 sin q1 q̇
2
1 + 2 cos q1 q̇1q̇2

)
.

Therefore, in order to obtain p̈ = 0 out of a singular configuration (q2 6= 0), the unique choice for
the joint acceleration is

q̈ = −J−1(q)J̇(q)q̇ = − 1

q2

(
−2q̇1q̇2

q22 q̇
2
1

)
.

We note also that it will never be possible to obtain p̈ = 0 in a singularity, when the product
q̇1q̇2 6= 0 (i.e., in the generic case for q̇ 6= 0).

1The further exploration of what happens in the singularity c3 = 0 is also suggested by the fact that this factor
appears as squared in the symbolic expression of the determinant of the Jacobian.

2The pseudoinverse can be computed symbolically with MATLAB in this simple case.
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Exercise 3

The mapping between Cartesian forces F ∈ R2 applied at the end effector of the RP robot and
balancing joint torques τ ∈ R2 guaranteeing static equilibrium is given by

τ = −JT (q)F = −
(
−q2 sin q1 q2 cos q1

cos q1 sin q1

)(
Fx

Fy

)
, (4)

thus being linear at a given configuration q. Vice versa, balancing joint torques map into Cartesian
forces as

F = −J−T (q)τ =
1

q2

(
sin q1 −q2 cos q1

− cos q1 −q2 sin q1

)(
τ1

τ2

)
.

This mapping will transform the rectangular region of feasible joint torques (whose vertices are
given by the four combinations of signs in τ = (± τmax,1,± τmax,2) into a polytope (here, a convex
polygon) of admissible Cartesian forces F = (Fx, Fy) that can be applied at the robot end effector
and effectively balanced. At q = (π/3, 1.5) [rad,m], the inverse of the Jacobian transpose is

J̄
−T

= J−T (q)
∣∣∣
q=(π/3,1.5)

=

(
−0.5774 0.5000

0.3333 0.8660

)
,

and the four vertices of this Cartesian region are computed as

F++ = −J̄−T
(

10

5

)
=

(
3.2735

−7.6635

)
F+− = −J̄−T

(
10

−5

)
=

(
8.2735

0.9968

)
F−− = −J̄−T

(
−10

−5

)
=

(
−3.2735

7.6635

)
F−+ = −J̄−T

(
−10

+5

)
=

(
−8.2735

−0.9968

)
.

The resulting admissible region is shown (in blue) in Fig. 4 (try to verify the correspondence
between the vertices).
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Figure 4: The set of feasible joint torques (rectangle in red) and the region of associated admissibile
Cartesian forces (skewed rectangle in blue) that can be statically balanced by the RP robot.

6



For an additional check, take one Cartesian force that belongs to the blue region and is close to a
boundary, and compute the balancing torque by (4) to verify its feasibility. For instance, with

F =

(
−4

6

)
[N] ⇒ τ = − JT (q)

∣∣∣
q=(π/3,1.5)

F =

(
−9.6962

−3.1962

)
[Nm,N],

the obtained τ is feasible.

Exercise 4

To address the problem one applies the following Cartesian kinematic control,

q̇ = J−1(q)
(
ṗd +KP (pd − p(q))

)
, with KP = kP · I2×2 > 0, (5)

where the common scalar gain kp i s used in both Cartesian directions because of the requested
uniformity of error behavior. For the given 2R planar robot and motion task, we have

p(q) =

(
c1 + c12

s1 + s12

)
, J(q) =

∂p(q)

∂q
=

(
− (s1 + s12) −s12
c1 + c12 c12

)
,

pd(t) = P 1 + vdt
(
P 2 − P 1

)
=

(
1

0.5

)
+ 0.5 t

(
0

1

)
, ṗd = vd

(
P 2 − P 1

)
=

(
0

0.5

)
.

The initial position of the end effector P 0 = (0.5, 0.5) [m] corresponds to an initial Cartesian error
at t = 0 that is non-zero only along the x-direction

ep(0) = pd(0)− p(q(0)) = P 1 − P 0 =

(
0.5

0

)
=

(
ep,x(0)

ep,y(0)

)
.

Moreover, from (5) it follows that ėp = −KP ep and so

ep(t) = exp (−Kpt) ep(0) ⇒

{
ep,x(t) = exp (−kP t) ep,x(0)

ep,y(t) = 0,
∀t ≥ 0.

The initial configuration of the robot at time t = 0 is found by the standard inverse kinematics of
a 2R robot (choosing the elbow down solution3:

q(0) = invkin (P in) =

(
−0.4240

2.4189

)
[rad].

Plugging all the above information in (5) yields at time t = 0

q̇(0) = J−1(q(0))

((
0

0.5

)
+

(
0.5 kP

0

))
=

(
−0.5 −0.9114

0.5 −0.4114

)−1(
0.5 kP

0.5

)

=

(
−0.6220 1.3780

−0.7559 −0.7559

)(
0.5 kP

0.5

)
=

(
0.6890

−0.3780

)
+ kP

(
−0.3110

−0.3780

)
.

3The choice of the elbow up solution would lead exactly to the same final result in this case, although passing
through different numerical values in intermediate passages.

7



Therefore, the largest (positive) proportional control gain that can be used to speed up the decrease
of the transient error along the x-direction while satisfying the joint velocity bounds on q̇(0),

−Vmax,1 = −3 ≤ 0.6890− 0.3110 kP ≤ 3 = Vmax,1,

−Vmax,2 = −2 ≤ 0.3780− 0.3780 kP ≤ 2 = Vmax,2,

is computed as follows:

k∗P = min

{
Vmax,1 + 0.6890

0.3110
,
Vmax,2 + 0.3780

0.3780

}
= min {11.8610, 4.2915} = 4.2915.

This choice will saturate the initial velocity of joint 2 to its largest negative value q̇2(0) = −Vmax,2 =
−2 rad/s. The solution is in fact

q̇(0) =

(
−0.6458

−2

)
[rad/s] ⇒ v(0) = J(q(0))q̇(0) =

(
2.1458

0.5000

)
[rad/s],

with the end-effector velocity pointing up and toward the path. See also the sketch of the initial
situation in Fig. 5.
The time constant of the exponential decrease of the tracking error is τP = 1/k∗P = 0.233 [s]. This
means that the error will be practically zero (i.e., reduced to less than 5% of its initial value) in
about 3τp ' 0.7 [s], namely when the nominal trajectory is still at 1/3 of its total travel time
(T = ‖P 2 − P 1‖/vd = 2 [s]).
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Figure 5: The 2R robot in the initial configuration, recovering the tracking error w.r.t. the desired
trajectory.
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