
Robotics 1

July 12, 2021

Exercise #1

Consider the 4-dof spatial RRRP robot in Fig. 1. The robot has a shoulder and an elbow offset.
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Figure 1: A spatial RRRP robot.

a) Assign a set of Denavit-Hartenberg (DH) frames and derive the associated table of parameters.
Place the 0-th DH frame coincident with the world frame RFw and the last DH frame with the
origin in P and the z axis in the approach direction. Draw all the DH frames on the robot.
Provide also the (approximate) values of the robot coordinates q in the shown configuration.

b) Compute in symbolic form the direct kinematics p = f(q) for the position of the end-effector.
Derive the analytical Jacobian J(q) of this map.

c) Neglect from now on the shoulder and elbow offsets (i.e., set B = D = 0). For the resulting
reduced Jacobian Jred(q), find (at least) a singular configuration q∗. In such a configuration,
define a feasible end-effector velocity v∗ ∈ R3 and find a joint velocity q̇∗ ∈ R4 that realizes it.

Exercise #2

A robot link is actuated by a DC motor with rotor inertia Im = 1.5 · 10−4 [kgm2] via a double
gearbox and a transmission shaft. An incremental encoder with N = 2000 pulses/turn is mounted
on the motor axis (without extra electronics for quadrature count). A first gearbox with reduction
ratio nr1 = 10 : 1 is placed at the motor output. This drives a long transmission shaft having
rotational inertia It = 0.5 · 10−2 [kgm2]. A second gearbox is placed at the end of the shaft with a
reduction ratio nr2 ≥ 1 which has to be defined. The final payload is the robot link, with an inertia
around its rotation axis I` = 0.8 · 10−1 [kgm2]. Neglecting all dissipative effects, model this robot
joint structure and find the value nr2 that minimizes the motor torque τm needed to accelerate
the link by θ̈` = a > 0. Accordingly, determine the angular resolution ∆θ` of the link position
provided by the encoder measurement on the motor side. For a bang-bang, rest-to-rest trajectory
rotating the link by θ`,d = −π/4 in T = 0.5 s, find the maximum absolute value τm,max (in [Nm])
of the torque that the motor needs to produce.
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Exercise #3

Plan a smooth rest-to-rest trajectory using a minimal representation of the orientation by means
of ZYX Euler angles (α, β, γ) from the initial orientation
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passing through the intermediate orientation
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.
In the inverse problems, use always the solution with the ‘+’ sign when there is such an option.
The time durations for the two subintervals are T1 = 2.5 [s] (from R1 to Rvia) and T2 = 1 [s] (from
Rvia to R2), with total motion time T = T1 + T2. The planned orientation trajectory should be
continuous up to the acceleration for all t ∈ (0, T ) (so, everywhere except at the initial and final
instants). At the end of the computations, sketch the time evolution of the three Euler angles
(α(t), β(t), γ(t)) and check whether or not a representation singularity is encountered during the
planned motion.

[180 minutes (3 hours); open books]
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Solution
July 12, 2021

Exercise #1

A possible assignment of Denavit-Hartenberg frames for the 4-dof RRRP robot is shown in Fig. 2.
The associated parameters are reported in Tab. 1.
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Figure 2: A possible assignment of DH frames for the 4-dof RRRP robot of Fig. 1.

i αi ai di θi

1 π/2 B A q1 = π/2

2 0 C 0 q2 ' π/4

3 π/2 D 0 q3 > 0

4 0 0 q4 > 0 0

Table 1: DH table of parameters corresponding to Fig. 2. The joint variables qi (in red) take values
associated to the robot configuration shown in the same figure.

With the data in Tab. 1, we construct the homogenous transformation matrices i−1Ai(qi), for
i = 1, . . . , 4. The position of the robot end-effector in homogeneous coordinates is efficiently
computed as

pH =

(
p

1

)
= 0A1(q1)A2(q2) 2A3(q3) 3A4(q4)

(
0

1

)
,

yielding

p = f(q) =

 cos q1 (B + C cos q2 +D cos(q2 + q3) + q4 sin(q2 + q3))

sin q1 (B + C cos q2 +D cos(q2 + q3) + q4 sin(q2 + q3))

A+ C sin q2 +D sin(q2 + q3)− q4 cos(q2 + q3)

 .
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Using the usual shorthand notation, the analytic Jacobian is thus

J(q) =
∂f(q)

∂q

=

−s1 (B + Cc2 +Dc23 + q4s23) −c1 (Cs2 +Ds23 − q4c23) −c1 (Ds23 − q4c23) c1s23

c1 (B + Cc2 +Dc23 + q4s23) −s1 (Cs2 +Ds23 − q4c23) −s1 (Ds23 − q4c23) s1s23

0 Cc2 +Dc23 + q4s23 Dc23 + q4s23 −c23

.
(1)

For singularity analysis, it is also very convenient to work with the Jacobian matrix expressed in
the (rotated) first DH frame:

1J(q) = 0RT
1 (q1)J(q)

=

 0 − (Cs2 +Ds23 − q4c23) − (Ds23 − q4c23) s23

B + Cc2 +Dc23 + q4s23 0 0 0

0 Cc2 +Dc23 + q4s23 Dc23 + q4s23 −c23

. (2)

By neglecting now the shoulder offset (B = 0) and the elbow offset (D = 0), we obtain from (1)
and (2)

Jred(q) =

 −s1 (Cc2 + q4s23) −c1 (Cs2 − q4c23) q4c1c23 c1s23

c1 (Cc2 + q4s23) −s1 (Cs2 − q4c23) q4s1c23 s1s23

0 Cc2 + q4s23 q4s23 −c23

,
and, respectively,

1Jred(q) =

 0 − (Cs2 − q4c23) q4c23 s23

Cc2 + q4s23 0 0 0

0 Cc2 + q4s23 q4s23 −c23

. (3)

The kinematic singularities of the reduced Jacobian are characterized by

rank {Jred(q)} = rank
{
1Jred(q)

}
< 3.

It is easy to see from (3) that the singularities are of two kinds:

(I) Cc2 + q4s23 = 0 ⇐⇒ the end-effector point P is on the axis of joint 1;

(II) q4 = 0 and s3 = 0 ⇐⇒ the prismatic joint is fully retracted

and link 2 and 4 are orthogonal to each other.

The last question is on generating a joint velocity solution that realizes a desired feasible end-
effector velocity in a singular configuration. Two examples are provided next for illustration.

• q∗ = (π/2, 0, 0, 0) (simple singularity of type II)

The robot is in the configuration sketched in Fig. 3 [left]. The reduced Jacobian is

J∗red = Jred(q∗) =

 −C 0 0 0

0 0 0 0

0 C 0 −1

 ⇒ rank {J∗red} = 2.
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A feasible end-effector velocity v∗ ∈ R3 and a joint velocity q̇∗ ∈ R4 that will realize it are

v∗ =

 0

0

−1

 ∈ R{J∗red} ⇒ q̇∗ = J#
red(q∗)v∗ =


0

− C
C2+1

0
1

C2+1

 ,

where the pseudoinverse J#
red of Jred has been computed numerically using MATLAB (but it

is easy to guess its full expression also by inspection). Another possible solution is given simply

by q̇∗′ =
(

0 0 0 1
)T

.

• q∗∗ = (π/2, π/2, 0, 0) (double singularity: type I and II together)

The robot is in the configuration sketched in Fig. 3 [right]. The reduced Jacobian is

J∗∗red = Jred(q∗∗) =

 0 0 0 0

0 −C 0 1

0 0 0 0

 ⇒ rank {J∗∗red} = 1.

A feasible end-effector velocity v∗∗ ∈ R3 and a joint velocity q̇∗∗ ∈ R4 that will realize it are
then

v∗∗ =

 0

1

0

 ∈ R{J∗∗red} ⇒ q̇∗∗ = J#
red(q∗∗)v∗∗ =


0

− C
C2+1

0
1

C2+1

 (= q̇∗!),

Another possible solution is given simply by q̇∗∗′ =
(

0 −1/C 0 0
)T

.
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Figure 3: Two singular configurations of the 4-dof RRRP robot with two associated feasible end-
effector velocities vd: [left] simple singularity; [right] double singularity.
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Exercise #2

Figure 4 shows the motor/sensor/transmission/link arrangement of the considered robot joint.
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Figure 4: The robot joint with definition of quantities.

The torque balance on the motor axis is given by

τm = Imθ̈m +
1

nr1

(
Itθ̈t

)
+

1

nr1nr2

(
I`θ̈`

)
,

whereas the angular velocities are related by

θ̇t = nr2 θ̇`, θ̇m = nr1 θ̇t = nr1nr2 θ̇`,

and similarly for the angular accelerations. Setting now a generic desired acceleration θ̈` = a > 0,
we obtain

τm = Im (nr1nr2 a) +
1

nr1
It (nr2 a) +

1

nr1nr2
I` a =

((
Im nr1 +

It
nr1

)
nr2 +

I`
nr1

1

nr2

)
a. (4)

The necessary condition for a minimum of τm as a function of the unknown nr2 is

∂ τm
∂ nr2

=

((
Im nr1 +

It
nr1

)
− I`
nr1

1

n2r2

)
a = 0,

or (
Im nr1 +

It
nr1

)
− I`
nr1

1

n2r2
= 0 ⇒ nr2 =

√
I`

It + Im n2r1
.

This is indeed also a sufficient condition for a minimum since

∂2τm
∂ nr2

2
=

2I`
nr1

1

n3r2
> 0.

Plugging in the numerical data, we obtain nr2 = 2. As for the resolution of the angular position
of link, we have

∆θ` =
1

nr1nr2
∆θm =

1

10 · 2
2π

2000
= 1.5708 · 10−4 [rad] = 0.009◦.
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Finally, the bang-bang angular acceleration ±Amax for a link that moves from rest to rest by θ`,d
in time T is obtained from the triangular velocity profile (with peak absolute speed Vmax at the
halftime t = T/2) as

Vmax ·
T

2
= θ`,d, Vmax = Amax ·

T

2
⇒ Amax =

4 |θ`,d|
T 2

.

The associated motor torque will also be bang-bang, ± τm,max, with the maximum absolute value
computed setting a = Amax in (4). With the numerical data, one obtains

Amax = 4π = 12.5664 [rad/s2], τm,max = 0.008 ·Amax = 0.1005 [Nm].

Exercise #3

The three given rotation matrices R1, Rvia, and R2 are first converted into their minimal repre-
sentation of the orientation by means of ZYX Euler angles (α, β, γ). From the direct mapping

RZY ′X′′(α, β, γ) = RZ(α)RY (β)RX(γ)

=

 cosα cosβ cosα sinβ sin γ − sinα cos γ cosα sinβ cos γ + sinα sin γ

sinα cosβ sinα sinβ sin γ + cosα cos γ sinα sinβ cos γ − cosα sin γ

− sinβ cosβ sin γ cosβ cos γ

,
we have the inverse solutions, for a given rotation matrix R = {Rij} in the regular case, computed
in the order

β = ATAN2
{
−R31,+

√
R2

32 +R2
33

}
,

α = ATAN2

{
R21

cosβ
,
R11

cosβ

}
,

γ = ATAN2

{
R32

cosβ
,
R33

cosβ

}
,

(5)

where the ‘+’ sign has been used in the expression of β, as requested. Applying (5) to the initial,
intermediate, and final rotation matrices yields

R1 ⇒ α1 =
π

2
, β1 = 0, γ1 =

π

4
,

Rvia ⇒ αv = −π
4
, βv =

π

6
, γv =

π

2
,

R2 ⇒ α2 = 0, β2 =
π

4
, γ2 =

3π

4
.

(6)

No singular case (cosβ = 0, or β = ±π/2) was found at these orientations.

The problem is to define a smooth interpolating function in time for each of the three Euler angles,
with zero boundary velocities. We need thus a simple spline, namely one constituted by only two
cubic polynomials. We rewrite these for a generic angle θ(t) in the two intervals t ∈ [0, T1] and
t ∈ [T1, T1 + T2] = [T1, T ], using conveniently the normalized times τi = t/Ti, for i = 1, 2:

θ(t) =

{
θ1(τ1) = a1τ

3
1 + b1τ

2
1 + θ1, τ1 ∈ [0, 1]

θ2(τ2) = a2 (τ2 − 1)
3

+ b2 (τ2 − 1)
2

+ θ2, τ2 ∈ [0, 1].
(7)
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Its first and second derivatives are

θ̇(t) =


θ̇1(τ1) =

1

T1

(
3a1τ

2
1 + 2b1τ1

)
, τ1 ∈ [0, 1]

θ̇2(τ2) =
1

T2

(
3a2 (τ2 − 1)

2
+ 2b2 (τ2 − 1)

)
, τ2 ∈ [0, 1]

(8)

and

θ̈(t) =


θ̈1(τ1) =

1

T 2
1

(6a1τ1 + 2b1) , τ1 ∈ [0, 1]

θ̈2(τ2) =
1

T 2
2

(6a2 (τ2 − 1) + 2b2) , τ2 ∈ [0, 1].
(9)

The cubics in (7) and the quadratics in (8) automatically satisfy the boundary conditions at t = 0
and t = T , respectively in position (θ1(0) = θ1 and θ2(1) = θ2) and velocity (θ̇1(0) = θ̇2(1) = 0).
Considering also the intermediate passage at θv and introducing the common (yet to be defined)
velocity v at the via point, we impose four more conditions as

θ1(1) = a1 + b1 + θ1 = θv

θ̇1(1) =
1

T1
(3a1 + 2b1) = v

θ2(0) = −a2 + b2 + θ2 = θv

θ̇2(0) =
1

T2
(3a2 − 2b2) = v,

and solve the resulting (2× 2 decoupled) linear system
1 1 0 0

3 2 0 0

0 0 −1 1

0 0 3 −2



a1

b1

a2

b2

 =


θv − θ1
v T1

θv − θ2
v T2


in terms of the spline coefficients

a1 = v T1 − 2 (θv − θ1)

b1 = 3 (θv − θ1)− v T1
a2 = 2 (θv − θ2) + v T2

b2 = 3 (θv − θ2) + v T2.

(10)

The remaining unknown v is obtained by imposing continuity of acceleration at the via point, i.e.,

θ̈1(1) =
1

T 2
1

(6a1 + 2b1) =
1

T 2
2

(−6a2 + 2b2) = θ̈2(0),

or

4

(
1

T1
+

1

T2

)
v =

6 (θv − θ1)

T 2
1

− 6 (θv − θ2)

T 2
2

yielding

v =
3

2 (T1 + T2)

(
T2
T1

(θv − θ1)− T1
T2

(θv − θ2)

)
. (11)

By replacing (11) in eqs. (10), and these in (7), we get finally the general solution.
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Substituting for θ1, θv, and θ2 the specific numerical values assigned respectively to α, β, and γ,
and using the time intervals T1 = 2.5 and T2 = 1 [s], the following three splines are obtained1 is
for the Euler angles α(t), β(t), and γ(t):

α(t) =


α1(τ1) =

207π

112
τ31 −

291π

112
τ21 +

π

2
, τ1 ∈ [0, 1]

α2(τ2) = −101π

280
(τ2 − 1)

3 − 171π

280
(τ2 − 1)

2
, τ2 ∈ [0, 1],

β(t) =


β1(τ1) = −13π

336
τ31 +

23π

112
τ21 , τ1 ∈ [0, 1]

β2(τ2) = −41π

840
(τ2 − 1)

3 − 37π

280
(τ2 − 1)

2
+
π

4
, τ2 ∈ [0, 1],

γ(t) =


γ1(τ1) =

31π

112
τ31 −

3π

112
τ21 +

π

4
, τ1 ∈ [0, 1]

γ2(τ2) = −53π

280
(τ2 − 1)

3 − 123π

280
(τ2 − 1)

2
+

3π

4
, τ2 ∈ [0, 1].

The plots of these three splines are reported in Fig. 5. The cubic polynomials in the two intervals
are drawn in different colors (blue for the first, red for the second). From the evolution of β(t) it
is clear that the singularity β = ±π/2 ' ± 1.57 [rad] of the ZYX Euler representation is never
encountered during the planned motion.
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Figure 5: The time evolution of the three interpolating Euler angles α(t), β(t), and γ(t).

∗ ∗ ∗ ∗ ∗

1This result has been generated by a symbolic code in MATLAB. Therefore, infinite precision arithmetic is used.
Indeed, the same formulas are obtained by a purely numerical code.
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