
Robotics 1

Remote Exam – June 5, 2020

Exercise #1

Consider the 4-dof robot in Fig. 1, with all revolute joints. Some axes of a Denavit-Hartenberg (D-H)
frame assignment are already given, together with an end-effector frame placed on the gripper. As-
suming that all angles defined as usual in the interval (−π,+π], complete the assignment of the
frames so that αi ≥ 0, for i = 1, . . . , 4. Provide the associated table of D-H parameters and
specify the value of q1 and the signs of q2, q3, and q4 in the configuration shown. Finally, find the
homogeneous transformation between the last D-H frame and the end-effector frame.

x0

z0

z1

z2

z3

z4

ze

xe

Lb

Lf

LaLw

Figure 1: A 4-dof robot with given D-H axes zi and an end-effector frame on the gripper.

Exercise #2

For the planar RRP robot in Fig. 2, define the direct kinematics r = f(q) from the joint
variables q = (q1, q2, q3) to the task variables r = (px, py, φ), derive the associated Jacobian
J(q), and find all its kinematic singularities. With l1 = 0.5 [m], compute in static conditions
the joint torque/force vector τ (with units [Nm,Nm,N]) that balances a force/moment vector

F =
(

0 1.5 −4.5
)T

[N,N,Nm] applied to the robot end-effector, first in the configuration

q0 =
(
π/2 0 3

)T
[rad,rad,m] and then in a singular configuration qs among those found.

l1
q2

x0

q1

q3

y0

P = (px, py)

𝜙

Figure 2: A RRP planar robot.

1

Exercise #3

The Jacobian of a 3R spatial robot relating q̇ ∈ R3 to the velocity v ∈ R3 of its end-effector is

J(q) =

 −s1(c2 + c23) −c1(s2 + s23) −c1s23
c1(c2 + c23) −s1(s2 + s23) −s1s23

0 c2 + c23 c23

 ,

where the shorthand notation has been used (e.g., c23 = cos(q2 + q3)). This matrix may have rank
1, 2, or 3, depending on the configuration q. In each of these cases, define a basis for the null space
N{J} and for the range space R{J} of the Jacobian. Find a configuration qs with rank J(qs) = 2

such that the end-effector velocity vs =
(
−1 1 0

)T
is feasible. Determine then a joint velocity

q̇s such that J(qs)q̇s = vs. Sketch graphically the situation.

Exercise #4

A 2R planar robot has to perform in a coordinated way a rest-to-rest motion from qs =
(

0 −π/2
)T

to qg =
(
−π/2 π/2

)T
, while guaranteeing continuity of acceleration at all times. Plan a joint

trajectory in the presence of bounds |q̇i| ≤ Vi on joint velocities and |q̈i| ≤ Ai on joint accelerations
(for i = 1, 2), so as to complete the motion task in minimum time T ∗ within the chosen class of
trajectories. Provide the value of T ∗ for V1 = 1, V2 = 2 [rad/s] and A1 = 1.5, A2 = 2 [rad/s2].

Exercise #5

This is in the form of a Questionnaire. Please answer with formulas and/or clear and short texts.

A) Which of the following matrices represents a rotation and which not? Motivate your answers.

R1 =


1√
2

0 1√
2

0 1 0

1√
2

0 − 1√
2

, R2 =


− 1√

3
− 1√

2
− 1√

6

− 1√
3

0 2√
6

− 1√
3

1√
2
− 1√

6

, R3 =


−
√

0.5 1√
2

0
√

0.5 1√
2

0

0 0 −1

.
B) An Harmonic Drive with a circular spline having 150 inner teeth is used as reduction element

in a robot joint. An absolute encoder is mounted on the motor side of the joint. How many
bits should have this encoder in order to provide an angular resolution better than or equal
to 0.0002 rad on the link side of the transmission?

C) A time series {qk} = {q(kTc)} of joint position measurements is collected every time step
Tc = 0.03 s (about 33 Hz) in the interval t ∈ [0, 0.6] s from the profile q(t) = −3 cosωt,
with ω = 2. Compute the joint velocity estimate q̇k for k = 20 using 1-step and 4-step
backward difference formulas (BDF methods). What is the related percentage error using
each method? What is the relation between the time step and the accuracy? Write a short
code (e.g., in MATLAB) and comment the obtained numerical results.

[180 minutes (3 hours); open books]

2

Solution
June 5, 2020

Exercise #1

A completed frame assignment with non-negative values of the twist angles αi, for i = 1, . . . , 4, is
shown in Fig. 3. The associated Denavit-Hartenberg parameters are reported in Tab. 1, together
with the signs of the variables qi = θi, for i = 1, . . . , 4, when the robot is in the configuration
shown in the figure (where q1 = 0). Note that this solution is not yet unique since the axes from
x2 to x4 could have been chosen each in the opposite direction (with no change of the constant
parameters αi’s in the table!). However, this one is more natural as it assigns positive lengths to
the non-zero parameters ai. The transformation between D-H frame 4 and end-effector frame is

4T e =


0 0 1 0

−1 0 0 0

0 −1 0 0

0 0 0 1

 .

x0

z0

z1

z2

z3

z4

ze

xe

Lb

Lf

LaLw

x1

x2x3

x4

Figure 3: Complete assignment of the D-H frames for the 4-dof robot. All frames are right-handed,
so the yi axes follow automatically (and are not shown).

i αi ai di θi

1 π/2 0 Lb q1 = π

2 π Lf 0 q2 < 0

3 π La 0 q3 > 0

4 0 Lw 0 q4 > 0

Table 1: The D-H table of parameters for the frame assignment in Fig. 3.

3

Exercise #2

The direct kinematics of this robot for the task at hand is

r =

 px

py

φ

 =

 l1 cos q1 + q3 cos(q1 + q2)

l1 sin q1 + q3 sin(q1 + q2)

q1 + q2

 = f(q),

and its 3× 3 Jacobian is

J(q) =
∂f(q)

∂q
=

 −l1 sin q1 − q3 sin(q1 + q2) −q3 sin(q1 + q2) cos(q1 + q2)

l1 cos q1 + q3 cos(q1 + q2) q3 cos(q1 + q2) sin(q1 + q2)

1 1 0

 .

It is easy to check that detJ(q) = l1 cos q2 and so a singularity occurs iff q2 = ±π/2. In this
singular configurations, the rank of the Jacobian is 2. The vector of torques (first two components)
and force (third component, for the prismatic joint) in the joint space that statically balances the
Cartesian vector F of forces/moment is given by τ = −JT (q)F . Setting l1 = 0.5 [m], we have in

the (nonsingular) configuration q0 =
(
π/2 0 3

)T
τ = −JT (q0)F = −

 −3.5 0 1

−3 0 1

0 1 0


 0

1.5

−4.5

 =

 4.5

4.5

−1.5

 [Nm, Nm, N].

We can choose for comparison a singular configuration qs which is similar to q0, namely with the

same values for q1 = π/2 and q3 = 3, but indeed with q2 = ±π/2. For qs,1 =
(
π/2 −π/2 3

)T
,

we obtain

τ = −JT (qs,1)F = −

 −0.5 3 1

0 3 1

1 0 0


 0

1.5

−4.5

 =

 0

0

0

 [Nm, Nm, N].

Therefore, no effort by the joint motors is needed1 to balance the Cartesian vector F , which lies in

this case in the null space of JT (qs,1). On the other hand, with qs,2 =
(
π/2 π/2 3

)T
we obtain

τ = −JT (qs,2)F = −

 −0.5 −3 1

0 −3 1

−1 0 0


 0

1.5

−4.5

 =

 9

9

0

 [Nm, Nm, N],

and we need torques on the first two joints in order to balance the Cartesian vector F . In fact,

F 6∈ N{JT (qs,2)} = α
(

0 1 3
)T

, ∀α.

Exercise #3

The given Jacobian matrix is associated to the direct kinematics of a 3R spatial robot with unitary
lengths of links 2 and 3. In fact, the end-effector position for such robot (with d1 = 0, without loss
of generality) is

p =

 px

py

pz

 =

 c1(c2 + c23)

s1(c2 + c23)

s2 + s23

 = f(q), (1)

1It would be useful to draw a picture of this case and to reason geometrically about the balance of moments at
the first and the second joint.

4

and thus

J(q) =
∂f(q)

∂q
=

 −s1(c2 + c23) −c1(s2 + s23) −c1s23
c1(c2 + c23) −s1(s2 + s23) −s1s23

0 c2 + c23 c23

 . (2)

We compute first the determinant of J(q). To simplify the result, it is convenient to premultiply
the Jacobian by the (nonsingular) rotation matrix

0RT
1 (q1) =

 c1 s1 0
−s1 c1 0

0 0 1

 ,

which implies expressing the Cartesian end-effector velocity v in the rotated frame 1 (attached to
the first link of the robot). This yields the simpler form

1J(q) = 0RT
1 (q1)J(q) =

 0 −(s2 + s23) −s23
c2 + c23 0 0

0 c2 + c23 c23

 .

We obtain then2

detJ(q) = det 1J(q) = −(c2+c23) det

(
−(s2 + s23) −s23
c2 + c23 c23

)
= − sin q3 (cos q2+cos(q2+q3)). (3)

Therefore, singularities occur for sin q3 = 0, i.e., when the forearm is stretched (q3 = 0, type I)
or fully folded (q3 = π, type II); or for c2 + c23 = 0 (type I), which corresponds to p2x + p2y = 0
from (1), i.e., when the end-effector lies on the joint axis 1; or at the intersection of the two
previous situations (type II). Singularities of type I are associated to a single loss of rank (i.e., in
these configurations, rank J(q) = 2), whereas singularities of type II are associated to a double
loss of rank (i.e., rank J(q) = 1). We remark also that, because of the equal length of links 2 and
3, when the forearm is fully folded the robot end-effector will certainly be on the axis of joint 1.
This explains why q3 = π is a singularity of type II.

Indeed, at configurations q where the Jacobian J(q) has full rank, we will have N{J} = 0 and
R{J} = R3. Let us now perform the analysis of subspaces for the various singular cases.

a) q3 = 0 (and c2 6= 0, otherwise this would become case d) below —a type-II singularity). The
Jacobian (2) takes the form

J I,0(q1, q2) =

 −2s1c2 −2c1s2 −c1s2
2c1c2 −2s1s2 −s1s2

0 2c2 c2

 = 0R1(q1)

 0 −2s2 −s2
2c2 0 0

0 2c2 c2


with rank J I,0 = 2 and

N{J I,0} =

α
 0

−1/
√

5

2/
√

5


 , R{J I,0} =

β1
 −s1c2c1c2

0

+ β2

 −c1s2−s1s2
c2


 , ∀α, β1, β2.

2When using the Symbolic Toolbox of MATLAB, the straight command detJ=simplify(det(J)) will produce
as output: −(cos q3 + 1)(sin(q2 + q3) − sin q2). This expression is indeed equivalent to (3), but more difficult to
analyze. The procedure followed in the text is suggested by the observation of the internal structure of matrix J(q)
in (2). It also lends itself to a more intuitive interpretation of the singular configurations of this 3R spatial robot.

5

b) q3 = π. The Jacobian (2) becomes

J II.π(q1, q2) =

 0 0 c1s2

0 0 s1s2

0 0 −c2


with rank J II,π = 1 and

N{J II,π} =

α1

 1

0

0

+ α2

 0

1

0


 , R{J II,π} =

β
 c1s2

s1s2

−c2


 , ∀α1, α2, β.

c) c2 + c23 = 0 (and c2 6= 0, otherwise this would also imply either q3 = 0 (case d) below) or
q3 = π (case b) above) —both singularities of type II). The Jacobian (2) becomes

J I.axis1(q) =

 0 −c1(s2 + s23) −c1s23
0 −s1(s2 + s23) −s1s23
0 0 −c2

 = 0R1(q1)

 0 −(s2 + s23) −s23
0 0 0

0 0 −c2


with rank J I,axis1 = 2 and

N{J I,axis1} =

α
 1

0

0


, R{J II,axis1} =

β1
 c1(s2 + s23)

s1(s2 + s23)

0

+ β2

 c1s23

s1s23

c2


, ∀α, β1, β2.

d) q3 = 0 AND c2 + c23 = 0 ⇒ q2 = ±π/2. The Jacobian (2) becomes

J II,double(q1) =

 0 ∓ 2c1 ∓ c1
0 ∓ 2s1 ∓ s1
0 0 0


with rank J II,double = 1 and

N{J II,double} =

α1

 1

0

0

+ α2

 0

−1/
√

5

2/
√

5


, R{J II,double} =

β
 c1

s1

0


, ∀α1, α2, β.

In order to find a joint velocity that realizes the desired end-effector velocity vs =
(
−1 1 0

)T
when the robot is in a type-I singularity, we should consider only the above two cases a) and c).
In case a), however, vs 6∈ R{J I,0} for any possible pair (q1, q2) (with c2 6= 0). This is checked by
organizing a 3× 3 matrix with vector vs next to basis vectors that span R{J I,0}, and computing

det

 −s1c2 −c1s2 −1

c1c2 −s1s2 1

0 c2 0

 = c22 (c1 + s1) 6= 0, ∀(q1, q2), with q2 6= ±
π

2
.

Therefore vs is independent from (and thus cannot be generated by) any combination of columns
of the Jacobian J(q) in such configurations. Conversely, in case c) the similar check yields

det

 c1(s2 + s23) c1s23 −1

s1(s2 + s23) s1s23 1

0 c2 0

 = c2(s1 − c1)(s2 + s23).

6

This determinant can be zeroed by choosing s1 = c1, i.e., for q1 = −π/4 or for q1 = 3π/4, both
admissible values in this case. Thus, for these two values of the first joint angle, it follows that
vs ∈ R{J II,axis1} in case c), i.e., when the robot end-effector is placed on the axis of joint 1
and its forearm is not stretched (q3 6= 0) nor folded (q3 6= π). A solution can then be found by
pseudoinversion of the Jacobian. Taking for instance q1 = −π/4, we have

Js(q2, q3) = J(q)|{q1=−π/4,c2+c23=0,c2 6=0} =


0 − 1√

2
(s2 + s23) − 1√

2
s23

0 1√
2
(s2 + s23) 1√

2
s23

0 0 −c2

 .

Its pseudoinverse can be computed also symbolically in MATLAB (still using the pinv function):

J#
s (q2, q3) =


0 0 0

−
√

2

2(s2 + s23)

√
2

2(s2 + s23)

s23
c2(s2 + s23)

0 0 − 1

c2

 .

The joint velocity that solves the problem is then

q̇s = J#
s (q2, q3)vs =


0√
2

s2 + s23
0

 . (4)

As a result, only joint 2 will move in order to realize the desired vs. Indeed, it is immediate to
check that Js(q2, q3)q̇s = vs. Wishing to obtain one of the many possible numerical solutions, we

can set, e.g., q =
(
−π/4 π/4 π/2

)T
and obtain from (4) the joint velocity q̇s =

(
0 1 0

)T
.

This situation is sketched in Fig. 4.

z0

z2

z1

x0

x2

x1

x3

v s = (⎯1 1 0)T

q1 = ⎯ p/4

q2 = p/4

q3 = p/2

vs = (⎯1 1 0)T

x0

x1

y0

q1 = ⎯ p/4

q3 = p/2

q2 = p/4

z3

z1

Figure 4: 3D view [left] and top view [right] of a singular configuration of type I for the 3R spatial
robot, where the desired end-effector velocity vs can actually be realized.

7

Exercise #4

The class of interpolating trajectories that we will consider is given by quintic polynomials, allowing
to impose rest-to-rest motion (zero initial and final velocity), but also zero initial and final accel-
eration and providing thus the required continuity over the entire motion interval, for t ∈ [0, T].
For a generic joint, we will use the doubly normalized quintic polynomial

qi(τ) = qi(0) + (qi(1)− qi(0))
(
10τ3 − 15τ4 + 6τ5

)
, i = 1, 2,

for τ = t/T ∈ [0, 1] and with q(0) = qs, q(1) = qg. For i = 1, 2, the associated first and second
time derivatives are

q̇i(τ) =
qg,i − qs,i

T

(
30τ2 − 60τ3 + 30τ4

)
and

q̈i(τ) =
qg,i − qs,i

T 2

(
60τ − 180τ2 + 120τ3

)
,

which are both automatically zero at τ = 0 and τ = 1. For this class of trajectories, the instants of
maximum velocity and acceleration (in absolute value) can be found analytically. The maximum
acceleration occurs when the jerk (third derivative) is zero, i.e., symmetrically to the trajectory
midpoint:

...
q i(τ) =

60(qg,i − qs,i)
T 3

(
1− 6τ + 6τ2

)
= 0 ⇒ τa = 0.5±

√
3

6
(with τa ∈ [0, 1]) .

Therefore3, we impose the acceleration bounds as

max
τ∈[0,1]

|q̈i(τ)| = |q̈i(τa)| = |qg,i − qs,i|
T 2

∣∣60 τa − 180 τ2a + 120 τ3a
∣∣ ≤ Ai, i = 1, 2. (5)

Similarly, the maximum velocity occurs when the acceleration is zero. In turn, the acceleration
is a cubic function of time for which we already know that two roots are in τ = 0 and τ = 1
(where velocity has its minimum, i.e., zero). It is easy to see that the third root is at τv = 0.5 (the
trajectory midpoint), where in fact the velocity reaches its maximum (in absolute value). Thus,
we have for the velocity bounds

max
τ∈[0,1]

|q̇i(τ)| = |q̇i(τv)| =
|qg,i − qs.i|

T

(
30 τ2v − 60 τ3v + 30 τ4v

)
≤ Vi, i = 1, 2. (6)

From (5) and (6), we solve for the minimum feasible motion time. One obtains

T ∗ = max {Tmin,V1
, Tmin,V2

, Tmin,A1
, Tmin,A2

} ,

with

Tmin,Vi
=
|qg,i − qs.i|

Vi

(
30 τ2v − 60 τ3v + 30 τ4v

)
, i = 1, 2,

and

Tmin,Ai
=

√
|qg,i − qs,i|

Ai
|60 τa − 180 τ2a + 120 τ3a | , i = 1, 2.

3Any of the two signs can be used in the expression of τa, provided we recognize that the accelerations in the two
instants will be equal in magnitude and opposite in sign. In the first instant (before the midpoint), the acceleration
will have the same sign of (qg,i − qs,i). However, in order to avoid making distinctions, we will take the absolute
value of each term in (5).

8

Plugging in the numerical data of the problem, we obtain

Tmin,V1
= 2.9452, Tmin,V2

= 2.9452, Tmin,A1
= 2.4589, Tmin,A2

= 3.0115,

so that T ∗ = Tmin,A2 = 3.0115 [s]. Accordingly, the saturating quantity is the acceleration of
joint 2, which will reach |q̈2(τa)| = A2 = 2 [rad/s2]. The other maximum values attained are
indeed all feasible:

|q̈1(τv)| = 0.9870 < 1 = V1, |q̈2(τv)| = 1.9560 < 2 = V2, |q̈1(τa)| = 1 < 1.5 = A1.

The plots of trajectory position, velocity, and acceleration of both joints are shown in Figs. 5–7.

0 0.5 1 1.5 2 2.5 3 3.5

time [s]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

[r
ad

]

joint positions

Figure 5: Position of joint 1 (in blue) and 2 (in red).

0 0.5 1 1.5 2 2.5 3 3.5

time [s]

-1

-0.5

0

0.5

1

1.5

2

[r
ad

/s
]

joint velocities

Figure 6: Velocity of joint 1 (in blue) and 2 (in red).

9

0 0.5 1 1.5 2 2.5 3 3.5

time [s]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

[r
ad

/s
2]

joint accelerations

Figure 7: Acceleration of joint 1 (in blue) and 2 (in red). The acceleration of the second joint is
the limiting factor in the minimum time solution.

Exercise #5

Three questions were posed.

A) Matrix R1 is not a rotation matrix: its columns are orthonormal, but the determinant is −1.
On the other hand, matrices R2 and R3 are both elements of SO(3), thus representing rotations.

B) In Harmonic Drives, the Flexspline element has always a number of outer teeth nFS which is
two less than the number of inner teeth nCS of the Circular Spline. The reduction ratio is thus

nr =
nFS

nCS − nFS
=
nCS − 2

2
=

148

2
= 74.

The angular resolution ρm of an absolute encoder mounted on the motor side and having Nt traces
(= nb bits) is related to the angular resolution ρl at the link side of the reduction element by

ρm =
2π

2nb
= nr · ρl = 74 · 0.0002 = 0.00148 [rad].

Therefore

nb =

⌈
log2

2π

0.00148

⌉
= d8.7298e = 9 bits.

C) Given the time evolution of the position profile q(t) = −3 cosωt, with ω = 2 [rad/s], we have
to compare the (known) true value of its analytical time derivative q̇(t) = 3ω sinωt, evaluated at
t = tk = kTc = 20 · 0.03 = 0.6 s, with two approximations given by Backward Difference Formulas
(BDF) in discrete time4, namely the 1-step (Euler)

q̇k,1 =
1

Tc
(qk − qk−1)

4Note that the coefficients of the combination of samples in BDFs of any order are always alternating in sign
and sum up to 0.

10

and the 4-step one

q̇k,4 =
1

Tc

(
25

12
qk − 4 qk−1 + 3 qk−2 −

4

3
qk−3 +

1

4
qk−4

)
,

both evaluated for k = 20, i.e., at the time sample tk = 0.6 s. The percentage errors of the two
approximations are given by

ef =

∣∣∣∣ q̇k − q̇k,fq̇k

∣∣∣∣ · 100 (%), f = 1 or 4.

This simple MATLAB code provides the result:

tc=0.03; om=2; k=20; % input data

t=k*tc; % time instant of evaluation = 0.6

t1=t-tc; t2=t1-tc; t3=t2-tc; t4=t3-tc; % backward time instants (up to 4)

qt=-3*cos(om*t); % position at the time instant of evaluation

qt1=-3*cos(om*t1); qt2=-3*cos(om*t2); % positions at previous time instants

qt3=-3*cos(om*t3); qt4=-3*cos(om*t4);

dq=3*om*sin(om*t) % exact value of velocity

dq1=(qt-qt1)/tc % approximation using 1-step BDF (Euler)

dq4=((25/12)*qt-4*qt1+3*qt2-(4/3)*qt3+(1/4)*qt4)/tc % approximation using 4-step BDF

e1=abs((dq-dq1)/dq)*100 % percentage error using 1-step BDF

e4=abs((dq-dq4)/dq)*100 % percentage error using 4-step BDF

The output is

dq = 5.5922, dq1 = 5.5237, dq4 = 5.5922, e1 = 1.2260 % e4 = 2.4770 · 10−4 %.

The 4-step approximation is much more accurate than the Euler method (in the short format
output of MATLAB, it has the same first four decimal digits as the true value). Reducing Tc will
reduce the estimation error (absolute or in percentage) for both methods.

∗ ∗ ∗ ∗ ∗

11

