
Robotics I
September 11, 2019

Exercise 1

The kinematics of a 3R robot is defined by the following Denavit-Hartenberg table (units in [m] or [rad]):

i αi ai di θi

1 π/2 0 d1 = 5 q1

2 0 a2 = 4 0 q2

3 0 a3 = 3 0 q3

Determine the 3 × 3 linear part of the geometric Jacobian J(q) of this robot. When the robot is in the
configuration q0 = (π/2, π/4, π/2) [rad] and has a joint velocity q̇0 = (1, 2,−2) [rad/s], determine, if
possible, a joint acceleration q̈ that realizes a zero end-effector acceleration, i.e., p̈ = 0. [Bonus: What if
the second link parameter is changed to a2 = 3?]

Exercise 2

q1

q2

y0

x0

Figure 1: A RP planar robot, with the definition of the joint variables.

The RP robot shown in Fig. 1 starts from rest at time t = 0 in the configuration q(0) = (0, 1) [rad; m] and
moves under the action of the following discontinuous joint acceleration commands for a time T = 2 [s]:

q̈1(t) =


A1 = 2 [rad/s2], t ∈ [0, T/4],

0, t ∈ [T/4, 3T/4],

−A1 = −2 [rad/s2], t ∈ [3T/4, T ];

q̈2(t) =

{
−A2 = −0.5 [m/s2], t ∈ [0, T/2],

A2 = 0.5 [m/s2], t ∈ [T/2, T ].

a. Plot the time profiles of qi(t), q̇i(t) and q̈i(t), for i = 1, 2.

b. Does the robot cross a singularity during this motion?

c. Compute the mid time configuration q(T/2) and the final configuration q(T ) reached in this motion.
Sketch the robot in these two configurations, as well as in the initial one.

d. Provide the analytic expressions of the end-effector velocity and acceleration norms, i.e., ‖ṗ‖ and ‖p̈‖.
e. Draw the end-effector velocity and acceleration vectors ṗ(T/2), p̈((T/2)−) and p̈((T/2)+) on the

mid time configuration of the robot sketched at item c. Compute the numerical values of ‖ṗ(T/2)‖,∥∥p̈((T/2)−)
∥∥ and

∥∥p̈((T/2)+)
∥∥.

Exercise 3

A link of length L = 1.5 m is rotated by a DC motor mounted at the base through a gear with reduction
ratio Nr = 4. The motor has a quadrature incremental encoder with Np = 250 pulses/turn and a digital
counter of n = 10 bits. The link carries a laser scanner at its other end. The laser measures distances from
the link tip to obstacles (in the same plane of link motion) up to a maximum distance of d = 5 m. The
laser has a depth resolution ∆ρ = 12 mm and an angular resolution δs = 0.2◦ in the range α = ±90◦ (the
zero is when the scanning ray is aligned with the link). Sketch the setup and analyze the resolution of this
system for measuring the position of objects in the environment. In the worst-case condition, which is the
largest possible Cartesian displacement ∆ of an object that provides no change in the output readings?

[180 minutes; open books]
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Solution
September 11, 2019

Exercise 1

The 3 × 3 Jacobian J(q) that relates the joint velocity q̇ ∈ R3 to the linear velocity ṗ ∈ R3 of the
end-effector of this robot can be equivalently computed either by differentiation of the direct kinematics
p = f(q) or geometrically. Both methods require the information provided by the DH table. We follow
here the first method. Note that the given DH table refers to a standard 3R elbow-type manipulator
without offsets: this is helpful to know, but not really needed in the computations.

The end-effector position is obtained from the homogenous transformation matrices:

pH =

(
p

1

)
= 0A1(q1)

(
1A2(q2)

(
2A3(q3)

(
0

1

)))

=⇒ p = f(q) =

 cos q1 (a2 cos q2 + a3 cos(q2 + q3))

sin q1 (a2 cos q2 + a3 cos(q2 + q3))

d1 + a2 sin q2 + a3 sin(q2 + q3)

 . (1)

Therefore, using the usual compact notation for trigonometric functions, we have

J(q) =
∂f(q)

∂q
=

 −s1 (a2c2 + a3c23) −c1 (a2s2 + a3s23) −a3c1s23
c1 (a2c2 + a3c23) −s1 (a2s2 + a3s23) −a3s1s23

0 a2c2 + a3c23 a3c23

 . (2)

The Jacobian is singular when1

detJ(q) = −a2a3 s3 (a2c2 + a3c23) = 0. (3)

The end-effector acceleration p̈ is computed as

p̈ = J(q)q̈ + J̇(q)q̇. (4)

Thus, in order to realize a zero end-effector acceleration, we need to set p̈ = 0 in (4) and solve for q̈, or

q̈ = −J−1(q)J̇(q)q̇. (5)

Indeed, this solution is valid as long as the robot is out of singularities. To evaluate (5), we need first to
derive the time derivative of the robot Jacobian. Let J i(q) be the ith column of the Jacobian J(q), for
i = 1, 2, 3. We compute 2

J̇(q) =
dJ(q)

dt

(
=

3∑
i=1

(
∂J i(q)

∂q
q̇

)
eTi =

3∑
j=1

∂J(q)

∂qj
q̇j

)

=

−c1q̇1 (a2c2 + a3c23) + s1 (a2s2q̇2 + a3s23(q̇2 + q̇3))

−s1q̇1 (a2c2 + a3c23)− c1 (a2s2q̇2 + a3s23(q̇2 + q̇3))

0

s1q̇1 (a2s2 + a3s23)− c1 (a2c2q̇2 + a3c23(q̇2 + q̇3)) a3s1q̇1s23 − a3c1c23(q̇2 + q̇3)

c1q̇1 (a2s2 + a3s23)− s1 (a2c2q̇2 + a3c23(q̇2 + q̇3)) −a3c1q̇1s23 − a3s1c23(q̇2 + q̇3)

− (a2s2q̇2 − a3s23(q̇2 + q̇3)) −a3s23(q̇2 + q̇3)

.
(6)

When the robot is in the configuration q0 = (π/2, π/4, π/2) [rad] and has a joint velocity q̇0 = (1, 2,−2) [rad/s],
evaluation of (2) and (6) gives

J0 = J(q0) =

 −0.7071 0 0

0 −4.9497 −2.1213

0 0.7071 −2.1213

 , J̇0 = J̇(q0)|q̇=q̇0
=

 5.6569 4.9497 2.1213

−0.7071 −5.6569 0

0 −5.6569 0

 .

Since detJ0 = −8.4853 6= 0,we can use eq. (5) for computing the joint acceleration q̈ that realizes a zero
end-effector acceleration:

q̈ = −J−1
0

(
J̇0q̇0

)
= −

 −1.4142 0 0

0 −0.1768 0.1768

0 −0.0589 −0.4125


 11.3137

−12.0208

−11.3137

 =

 16

−0.1250

−5.3750

 [rad/s2]. (7)

1This computation is made easier when expressing the Jacobian in frame 1, i.e., using 1J(q) = 0RT
1 (q1)J(q).

2The first expression in the large parenthesis uses the dyadic expansion of a matrix: J(q) =
∑3
i=1 Ji(q) eTi ,

where eTi is the i-th row of the identity matrix.
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Bonus part. If we change the second link parameter from a2 = 4 to a2 = 3, a singular configuration will be
encountered. This can be recognized already from the direct klnematics (1); in fact, we have in this case

p′ = p|a2=3 =
(

0 0 9.2426
)T
,

namely the end-effector is placed on the axis of joint 1: any rotation q̇1 will not move the end-effector —a
situation of singularity. Re-evaluating then the Jacobian (2) yields

J ′0 = J(q0)|a2=3 =

 0 0 0

0 −4.2426 −2.1213

0 0 −2.1213

 ⇒ detJ ′0 = 0, R
{
J ′0
}

= span


0

1

0

 ,

0

0

1


 .

In these cases, compensating with a suitable joint acceleration a drift of the end-effector acceleration due
to the current joint velocity is still possible, provided that the Cartesian drift is in the span of the Jacobian,
Moreover, the inversion in (5) should be replaced by a pseudoinversion of the Jacobian matrix, namely

q̈ = −J#(q)J̇(q)q̇. (8)

To check if this is the case, we re-evaluate with (6) the time derivative of the Jacobian, and then the drift
term:

J̇
′
0 = J̇0|a2=3 =

 4.2426 4.2426 2.1213

0 −4.2426 0

0 −4.2426 0

 ⇒ J̇
′
0q̇0 = J̇

′
0

 1

2

−2

 =

 8.4853

−8.4853

−8.4853

 6∈ R{J ′0} .
Therefore, even with the use of a pseudoinverse, we will not be able to impose the desired (zero) end-
effector acceleration: an error (of minimum possible norm) will result. Computing the pseudoinverse and
evaluating (8) gives

J#′

0 = J#
|a2=3(q0) =

 0 0 0

0 −0.2357 0.2357

0 0 −0.4714

 =⇒ q̈ = −J#′

0 J̇
′
0 q̇0 =

 0

0

−4

 .

Checking the end-effector acceleration obtained with this joint solution,

p̈ = J ′0J̇
′
0q̇0 =

(
8.4853 0 0

)T 6= 0T ,

confirms that the component that is outside the range of the Jacobian (i.e., in the x direction) is not
canceled, while the task is achieved for the remaining part.

Exercise 2

We proceed by integrating twice the joint acceleration commands, taking into account the initial state of
the robot at time t = 0 (q(0) = (0, 1) [rad; m], q̇(0) = 0) and the total motion time T = 2 [s]. For the
joint velocities, we have obtain

q̇1(t) =


A1t = 2 t [rad/s], t ∈ [0, 0.5],

V1 = 1 [rad/s], t ∈ [0.5, 1.5],

V1 −A1(t− 1.5) = 1− 2(t− 1.5) = 4− 2 t [rad/s], t ∈ [1.5, 2]

and

q̇2(t) =

{
−A2t = −0.5 t [m/s], t ∈ [0, 1],

−V2 +A2(t− 1) = −0.5 + 0.5(t− 1) = 0.5 t− 1 [m/s], t ∈ [1, 2].

For the joint positions, we obtain

q1(t) =


q1(0) + 1

2
A1t

2 = t2 [rad], t ∈ [0, 0.5],

q1(0.5) + V1(t− 0.5) = 0.25 + (t− 0.5) = t− 0.25 [rad], t ∈ [0.5, 1.5],

q1(1.5) + V1(t− 1.5)− 1
2
A1(t− 1.5)2 = 1.25 + (t− 1.5)− (t− 1.5)2 [rad], t ∈ [1.5, 2]

and

q2(t) =

{
q2(0)− 1

2
A2t

2 = 1− 0.25 t2[m], t ∈ [0, 1],

q2(1)− V2(t− 1) + 1
2
A2(t− 1)2 = 0.75− 0.5(t− 1) + 0.25(t− 1)2 [m], t ∈ [1, 2].

The qualitative time profiles of qi(t), q̇i(t) and q̈i(t), for i = 1, 2, are shown in Fig. 2, with joint variations
∆q1 = 1.5 [rad] and ∆q2 = −0.5 [m]. The robot never crosses its kinematic singularities, i.e., any
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Figure 2: Qualitative plots of q̈(t), q̇(t) and q(t) for the RP robot, as specified in the text.
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Figure 3: The RP robot in the initial, mid and final time configurations (values in [rad;m])

configuration qs = (∗, 0) with the second link fully retracted. The initial, mid time and final configurations
are

q(0) =

(
0

1

)
, q(1) =

(
0.75

0.75

)
, q(2) =

(
1.5

0.5

)
[rad; m].

Fig. 3 sketches the RP robot in these configurations.

The end-effector velocity and acceleration of the RP robot are computed by differentiation of its direct
kinematics

p =

(
q2 cos q1

q2 sin q1

)
.

We have

ṗ =

(
q̇2 cos q1 − q̇1q2 sin q1

q̇2 sin q1 + q̇1q2 cos q1

)
=

(
cos q1 − sin q1

sin q1 cos q1

)(
q̇2

q2q̇1

)
= R(q1)

(
q̇2

q2q̇1

)
, (9)

where a planar 2× 2 rotation matrix R by an angle q1 has been put in evidence. The last vector in (9) is
the end-effector velocity expressed in the frame rotated by the angle q1, i.e., 1ṗ. The norm of vector ṗ is
computed as follows:

‖ṗ‖2 = ṗT ṗ =
(
q̇2 q2q̇1

)
RT(q1)R(q1)

(
q̇2

q2q̇1

)
=

∥∥∥∥∥
(
q̇2

q2q̇1

)∥∥∥∥∥
2

= q22 q̇
2
1 + q̇22 ⇒ ‖ṗ‖ =

√
q22 q̇

2
1 + q̇22 .

(10)
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For computing the acceleration p̈, note first that

Ṙ(q1) =

(
− sin q1 − cos q1

cos q1 − sin q1

)
q̇1 =

(
cos q1 − sin q1

sin q1 cos q1

)(
0 −1

1 0

)
q̇1 = R1(q1)

(
0 −q̇1
q̇1 0

)
.

Differentiation of eq. (9) provides

p̈ = R(q1)

(
q̈2

q̇1q̇2 + q2q̈1

)
+ Ṙ(q1)

(
q̇2

q2q̇1

)

= R(q1)

((
q̈2

q̇1q̇2 + q2q̈1

)
+

(
0 −q̇1
q̇1 0

)(
q̇2

q2q̇1

))
= R(q1)

(
q̈2 − q2 q̇21
q2q̈1 + 2q̇1q̇2

)
= R(q1) 1p̈.

(11)

Moreover, the norm of this vector is

‖p̈‖ =
∥∥1p̈∥∥ =

√
(q̈2 − q2 q̇21)2 + (q2q̈1 + 2q̇1q̇2)2. (12)

The evaluation of (9) and (10) at t = T/2 = 1 s yields

ṗ(1) = R(q1(1))

(
q̇2(1)

q2(1)q̇1(1)

)
= R(q1(1))

(
−0.5

0.75

)
=

(
−0.8771

0.2079

)

and

‖ṗ(1)‖ =
√
q̇22(1) + q22(1)q̇21(1) = 0.9014.

The evaluation of (11) at t = T/2 = 1 s should take into account the discontinuity of the acceleration of
the second joint at the mid time of motion. Therefore, we should consider the two values just before (−)
and just after (+) the mid time instant:

p̈(1−) = R(q1(1))

(
q̈2(1−)− q2(1)q̇21(1)

q2(1)q̈1(1) + 2q̇1(1)q̇2(1)

)
= R(q1(1))

(
−1.25

−1

)
=

(
−0.2330

−1.5837

)

and

p̈(1+) = R(q1(1))

(
q̈2(1+)− q2(1)q̇21(1)

q2(1)q̈1(1) + 2q̇1(1)q̇2(1)

)
= R(q1(1))

(
−0.25

−1

)
=

(
−0.4987

−0.9021

)
.

Similarly, for the norm (12) we have∥∥p̈(1−)
∥∥ =

√
(q̈2(1−)− q2(1)q̇21(1))2 + (q2(1)q̈1(1) + 2q̇1(1)q̇2(1))2 = 1.6008

and ∥∥p̈(1+)
∥∥ =

√
(q̈2(1+)− q2(1)q̇21(1))2 + (q2(1)q̈1(1) + 2q̇1(1)q̇2(1))2 = 1.0308.

Finally, Fig. 4 shows the vectors ṗ(1), p̈(1−) and p̈(1+) on the RP robot in the mid time configuration.
For this picture, it is more convenient to use the vectors expressed in the rotated frame, i.e., to draw for
instance 1ṗ(1) on the rotated second link (rather than attempting directly to draw ṗ(1)). Note that the
relative scales of these vectors are somewhat arbitrary.

y0

x0

q2=0.75

q1=0.75

�̇� y0

x0

q2=0.75

q1=0.75

�̈�#

�̈�$

Figure 4: The mid time robot configuration with: ṗ(1) [left]; p̈(1−) and p̈(1+) [right].
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Exercise 3

The measurement system is composed by two parts, the laser scanner and the rotating link carrying it,
see Fig. 5. The rotation added by the actuated link is useful because it enlarges the angular range of the
sensor. On the other hand, uncertainty is added to the laser measurement, due to the angular resolution
of the encoder which translates into an uncertain localization of the base of the sensor. To analyze the
overall behavior, we consider first the two systems separately.

L

motor

encoder

reduction    
gear

link

laser
scanner

rays
𝜶 = 𝟎

𝜶 =
𝝅
𝟐

𝜶 = −
𝝅
𝟐

d

Figure 5: The measurement system made by a rotating link that carries a laser scanner.

For the motor-link assembly, the angular resolution δm of the encoder mounted on the motor shaft (after
electronic multiplication by 4) and the lateral uncertainty ∆L at the link end are computed as

δm =
360◦

4×Np

( π

180◦

)
=

2π

4× 250
= 0.00628 [rad], ∆L =

δm
Nr

L =
0.00628

4
1.5 = 0.0024 [m] = 2.4 [mm].

Note that the n = 10 bits of the digital counter in the encoder are sufficient to represent the full rotation,
since 2n = 210 = 1024 > 1000 (the number of electrical pulses per turn).

For the laser scanner, the angular resolution δs corresponds to an uncertainty in the lateral positioning
(w.r.t. the pointing ray) of a sensed object. The worst-case situation is when the object is placed at the
maximum sensing distance d from the laser source. The (Cartesian) width resolution ∆φ in this case is

∆φ = δs d = 0.2◦
( π

180◦

)
5 = 0.00349× 5 = 0.0175 [m] = 17.5 [mm].

Instead, the depth resolution ∆ρ is rather independent from the distance. Thus, the region of uncertainty
in the scanning process, when the base of the laser sensor is in a fixed, known position, can be approximated
by a rectangle of size ∆ρ ×∆φ = 12× 17.5 [mm×mm]. A displacement of an object within this small area
will not generate any change in the sensor reading. In particular, if it crosses this area in diagonal, we get

∆ '
√

∆2
ρ + ∆2

φ =
√

122 + 17.52 = 21.2 [mm]. (13)

d 𝛼 =
𝜋
2

z

L

Δ&

𝛼 = 0𝛼

Δ( 𝛿*

d

Δ++Δ&

Δ+
Δ(+Δ&

(a)

(b)

motor + encoder

link

laser  scanner

Figure 6: Two (expanded) Cartesian regions of measurement uncertainty: (a)α = 0; (b) α = π/2.

When combining the scanning process with the variable orientation of the link, the measurement uncer-
tainty on the object position will increase, due to the uncertainty ∆L on the lateral positioning at the link
end where the sensor is placed. However, the outcome of this combination will depend on the relative angle
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between the direction of the laser ray and the direction of the link that carries the sensor. With reference
to Fig. 6, we consider two limit cases: when the ray is aligned with the link, at α = 0 [case (a)], and when
the ray is at the boundary of its angular sensing range, e.g., at α = π/2 [case (b)]. In the first case, ∆L

adds to ∆φ while the depth resolution ∆ρ remains unaffected. In the second case, ∆L adds to ∆ρ while
the width resolution ∆φ is unaffected. All other feasible values of α lead to intermediate situations. The
largest Cartesian displacement of an object that would provide no change in the output reading is again
on the diagonal of the rectangle of uncertainly. We have:

∆a '
√

∆2
ρ + (∆φ + ∆L)2, ∆b '

√
(∆ρ + ∆L)2 + ∆2

φ.

Since for the given data ∆φ > ∆ρ, it follows that ∆a > ∆b. Thus, the worst increase in uncertainty will
happen in case (a):

∆ = ∆a '
√

122 + (17.5 + 2.4)2 = 23.2 [mm].

The resolution of the measurement system (or, equivalently, the largest positional uncertainty of the sensed
object) in the mobile case has worsened by about 2 mm with respect to the fixed case.

∗ ∗ ∗ ∗ ∗
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