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Exercise 1

Consider the 3R planar robot in Fig. 1. The robot is placed in a vertical plane and holds firmly a payload
P , modeled as a concentrated mass m, which is off-centered with respect to its tip (the relevant kinematic
data are defined in the figure). Determine the symbolic expression of the joint torque τ ∈ R3 needed to
keep the system in static equilibrium at a configuration q0, when the position epep of the payload is known
in the end-effector frame. Using the DH convention for the joint variables, compute the numerical value
of τ for the following data:

L1 = 1, L2 = 0.5, L3 = 0.25, epep =
(

0.2 0.3 0
)T

[m]; q0 =
(
π/3 −π/6 −π/6

)T
[rad]; m = 7 [kg].
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Figure 1: A 3R planar robot holding a payload P of mass m.

Exercise 2

The end effector of the RP planar robot shown in Fig. 2 should trace a linear path between the points

A =
(

4.5 1.5
)T

and B =
(

3 3
)T

(units are in [m]), as expressed in a world reference frame wRF .
The robot has limited joint ranges: |q1| ≤ q1,max = π/4 [rad], 1.5 = q2,min ≤ q2 ≤ q2,max = 3 [m]. Check
if the given task is feasible and, if so, place and orient the robot base frame RF0 so that the task can
be realized. Provide the positions of the two points A and B expressed in the robot base frame and the
associated robot configurations.
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Figure 2: A RP planar robot, with the definition of the joint variables.

Exercise 3

A robot joint should perform a rest-to-rest rotation ∆θ in a total time T by using a bang-coast-bang
acceleration profile with symmetric acceleration and deceleration phases, each of duration Ts = T/4.
Given a maximum joint velocity Vmax > 0 and a maximum bound Amax > 0 for the absolute value of the
joint acceleration, find the minimum time Tmin in this class of trajectories such that the motion is feasible.
Provide the general expression of Tmin in terms of the symbolic parameters of the problem, and then its
numerical value for the following data:

∆θ = π [rad], Vmax = 90 [◦/s], Amax = 300 [◦/s2].

Sketch the resulting angular position, velocity, and acceleration profiles.

[150 minutes, open books]



Solution
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Exercise 1

With reference to Fig. 1 (and embedding the problem in 3D), we need to compute the 3 × 3 Jacobian
JP (q) associated to the linear velocity of the payload point P and then use duality to determine the static
torque τ g = −JT

P (q0)F g ∈ R3 that will balance, at the configuration q0, the effect of the gravity force
F g acting on the payload. This force is in the direction of −y0 and has intensity mg0 > 0. In organizing

computations, we take into account that the position epep =
(
pep,x pep,x 0

)T
of the payload mass is

given in the end-effector frame RFe (= RF3 of a DH convention).

Using DH angles, the position of the origin of frame RFe is

pe(q) =

 L1c1 + L2c12 + L3c123

L1s1 + L2s12 + L3s123

0

 ,

with the usual compact notation for the trigonometric functions (e.g., c12 = cos(q1 + q2)). The orientation
of frame RFe w.r.t. the robot base frame is expressed by the rotation matrix

0Re(q) =

 c123 −s123 0

s123 c123 0

0 0 1

 .

The position of the payload P is then

pP (q) = pe(q) + 0Re(q) epep.

The llnear velocity of the payload is computed as

vP = ṗP =
∂pe(q)

∂q
q̇ + 0Ṙe(q)e pep = Je(q)q̇ + S(ωe) 0Re(q) epep,

with the skew-symmetric matrix S(ωe) given by

ωe =

 0

0

q̇1 + q̇2 + q̇3

 ⇒ S(ωe) =

 0 −(q̇1 + q̇2 + q̇3) 0

q̇1 + q̇2 + q̇3 0 0

0 0 0

 .

Performing computations gives

Je(q) =

−(L1s1 + L2s12 + L3s123) −(L2s12 + L3s123) −L3s123

L1c1 + L2c12 + L3c123 L2c12 + L3c123 L3c123

0 0 0


and

S(ωe) 0Re(q) epep =

− (pep,xs123 + pep,yc123)

pep,xc123 − pep,ys123
0

 (q̇1 + q̇2 + q̇3) = n(q)
(

1 1 1
)
q̇.

Thus
vP =

(
Je(q) + n(q)

(
1 1 1

))
q̇ = JP (q)q̇,

and so

τ g = −JT
P (q0)F g = JT

P (q0)

 0

mg0

0

 = mg0

 L1c1 + L2c12 + (L3 + pep,x) c123 − pep,ys123
L2c12 + (L3 + pep,x) c123 − pep,ys123

(L3 + pep,x) c123 − pep,ys123

 . (1)
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Plugging in (1) the numerical values for the link lengths Li, i = 1, 2, 3, the configuration q0, the mass m
and the coordinates pep,x and pep,y of the payload in RFe, we obtain finally

τ g =

 94.9715

60.6365

30.9015

 [Nm].

Exercise 2

We should check first whether the linear path from A to B fits in the bounded workspace of the RP planar
robot. The workspace is represented in Fig. 3, together with a segment of length L = ‖B −A‖ =

√
4.5 =

2.2113 [m] that joins 0A with 0B, i.e., the two given points A and B as expressed in frame RF0 (rather
than in RFw). It is immediate to see that the linear path is fully contained in the robot workspace, once
the robot base is suitably placed and rotated. In fact, there are infinite ways for doing so. We shall work
with the choice made in Fig. 3, which makes derivations easier: the segment AB is placed symmetrically
w.r.t. the axis x0 and at a distance D = q2,max/

√
2 = 2.1213 [m] from the origin of RF0. As a result, the

coordinates of the two points in frame RF0 are

0A =

(
D

−L/2

)
=

(
2.1213

−1.0607

)
, 0B =

(
D

L/2

)
=

(
2.1213

1.0607

)
[m].

Moreover, the robot configurations corresponding to the initial and final points of the linear path are

qA =

(
ATAN2 {−L/2, D}∥∥0A∥∥

)
=

(
−0.4636

2.3717

)
, qB =

(
ATAN2 {L/2, D}∥∥0B∥∥

)
=

(
0.4636

2.3717

)
[rad].
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Figure 3: The workspace of the RP robot, as specified by the limited joint ranges.

The position and orientation of the base of the RP planar robot with respect to RFw can be expressed by
a (planar/2D) homogeneous transformation matrix of the form

wA0 =

(
wR0

wp0

0T 1

)
=

 cos θ0 − sin θ0 px

sin θ0 cos θ0 py

0 0 1

 .
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Thus, from the kinematic identity for the representations of vectors in homogeneous coordinates we have

wAhom =

 4.5

1.5

1

 = wA0
0Ahom = wA0

 D

−L/2
1

 ⇒


D cos θ0 +

L

2
sin θ0 + px = 4.5

D sin θ0 −
L

2
cos θ0 + py = 1.5

(2)

and

wBhom =

 3

3

1

 = wA0
0Bhom = wA0

 D

L/2

1

 ⇒


D cos θ0 −

L

2
sin θ0 + px = 3

D sin θ0 +
L

2
cos θ0 + py = 3.

(3)

The linear system (2–3) of four equations in the four unknowns cos θ0, sin θ0, px and py is nonsingular,
and thus we have a unique solution to the problem (up to a reflection of the robot placement w.r.t. the
line containing the path). The solution is obtained numerically from the given data as

θ0 =
π

4
[rad] (sin θ0 = cos θ0 =

√
2

2
), px = 2.25, py = 0.75 [m]. (4)

It is interesting to note that one can obtain this solution also in closed symbolic form. The linear system
to be solved is in fact

D L/2 1 0

−L/2 D 0 1

D −L/2 1 0

L/2 D 0 1




cos θ0

sin θ0

px

py

 =


Ax

Ay

Bx

By

 ⇐⇒ Mx = b =


4.5

1.5

3

3

 .

The determinant of the coefficient matrix is detM = L2 6= 0. The unique solution is found then as

x =


cos θ0

sin θ0

px

py

 = M−1b =


0 −1/L 0 1/L

1/L 0 −1/L 0

0.5 D/L 0.5 −D/L
−D/L 0.5 D/L 0.5




4.5

1.5

3

3

 =


3/(2L)

3/(2L)

3.75− 3D/(2L)

2.25− 3D/(2L)

 .

Substituting now D = 3/
√

2 = 2.1213 and L = 1.5
√

2 = 2.1213 returns the numerical values in (4).

Exercise 3

The acceleration profile for the rest-to-rest motion trajectory θ(t) is assigned to be of the bang-coast-bang
type, having symmetric initial and final acceleration/deceleration phases, each of duration Ts = T/4 and
with θ̈ = ±A (to be determined), and a cruising phase that lasts for half of the motion time, i.e., T/2,
with constant velocity θ̇ = V . From this motion structure, choosing as arbitrary initial angle θ(0) = 0, it
is easy to compute the following quantities:

V = θ̇

(
T

4

)
= A

T

4
, ∆θs = θ

(
T

4

)
=

1

2
A

(
T

4

)2

=
AT 2

32
, ∆θ = θ(T ) = 2∆θs + V

T

2
=

3AT 2

16
.

Thus, for a desired total displacement ∆θ > 0 and a given motion time T , we have for the acceleration A
and cruise velocity V

A =
16∆θ

3T 2
> 0 ⇒ V =

4∆θ

3T
> 0. (5)

Note that, when the acceleration phase ends at time t = Ts = T/4, the performed angular displacement
is ∆θs = ∆θ/6. By symmetry, when the deceleration phase begins at time t = T − Ts = 3T/4, the
displacement done so far will be ∆θ −∆θs = 5∆θ/6.
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Imposing now on (5) the two constraints

V ≤ Vmax, A ≤ Amax,

yields the minimum feasible motion time

Tmin = max

{
4

√
∆θ

3Amax
,

4∆θ

3Vmax

}
.

With the data ∆θ = π [rad], Vmax = 90 [◦/s] · (π/180◦) = π/2 = 1.5708 [rad/s], and Amax = 300 [◦/s2] ·
(π/180◦) = 5π/3 = 5.2360 [rad/s2], we find the value of the optimal motion time

Tmin = 2.6667 [s].

From (5), it follows A = 2.3562 [rad/s2] and V = Vmax = 1.5708 [rad/s]. Saturation of the constraint has
occurred in the cruise phase. Figure 4 shows the resulting profiles of the angular position, velocity, and
acceleration.
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Figure 4: Position, velocity, and acceleration profiles for the considered minimum time rest-to-rest
joint rotation.
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