
Robotics I
February 5, 2019

Exercise 1

Consider the spatial 4R robot shown in Fig. 1. The second and third joint axes are always horizontal.

Figure 1: A 4-dof spatial robot with all revolute joints.

a. Assign the link frames according to the Denavit-Hartenberg (DH) convention and complete the asso-
ciated table of parameters, specifying the signs of all constant symbolic parameters. Keep base frame
(frame 0) and last frame (the end-effector frame 4) as defined in Fig. 1 (these frames satisfy already
the DH requirements!). Draw the frames and fill in the table on the extra sheet provided separately.

b. Write explicitly the resulting DH homogeneous transformation matrices 0A1(q1) to 3A4(q4) and com-
pute in an efficient way the direct kinematics p4 = p4(q) ∈ R3 for the position of the origin O4.

c. Discuss if and how the number of symbolic parameters in the direct kinematics of this robot could be
reduced. What would be the consequences?

d. Sketch the robot in the stretched upward configuration and specify which is the associated configuration
qs in your DH convention. Compute then ps = p4(qs).

e. In the configuration q0 = 0, determine the expression in the base frame of the absolute position of a

Tool Center Point (TCP) which is defined in the end-effector frame by 4p4,TCP =
(

0 0.1 0.2
)T

[m].

Exercise 2

Make reference to the robot in Exercise 1.

a. Derive the expression of the 6 × 4 geometric Jacobian matrix J(q) of this robot, relating the joint
velocity q̇ ∈ R4 to the linear velocity v ∈ R3 and angular velocity ω ∈ R3 of the end-effector frame.

b. Find all configurations at which the upper 3× 4 block JL(q) of the geometric Jacobian loses rank.

c. Find all configurations at which the lower 3× 4 block JA(q) of the geometric Jacobian loses rank.

d. In the configuration q0 = 0, check if the linear Cartesian velocity vb =
(

1 0 1
)T

is feasible. Provide
a joint velocity q̇b ∈ R4 that instantaneously realizes vb or, at least, that minimizes the norm of the
error w.r.t. the Cartesian velocity vb. If such a joint velocity exists, is it unique?
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Exercise 3

Consider the planar 2R robot in Fig. 2, shown together with the geometric data of its desired task. The
robot end-effector should follow a desired trajectory made by a circular path of radius R centered at

C0 =
(
C0,x C0,y

)T
, to be executed clockwise with a continuous, possibly time-varying desired scalar

speed v(t) > 0, starting at time t = 0 from the path point P 0 =
(
P0,x P0,y

)T
=
(
C0,x+R C0,y

)T
.

P0

x0

y0

P

C0

v
R

q2

q1

L1

L2

Figure 2: A planar 2R robot and its nominal end-effector trajectory.

Assuming that the robot is commanded by the joint velocity q̇, define a single control law that guarantees
the following properties:

• when the initial robot configuration q0 = q(0) at t = 0 is matched with the Cartesian point P 0, there
is a perfect reproduction of the desired trajectory for all t ≥ 0;

• if there is no such initial matching, the Cartesian trajectory tracking error will converge to zero ex-
ponentially and in a decoupled way with respect to its components expressed in a reference frame
RFr(t) = (xr(t),yr(t)) that is moving with the desired position and has the axis xr(t) always tangent
to the path.

a. Using next the following numerical data

L1 = L2 = 0.5, C0 =

(
0.2

0.3

)
, R = 0.15 [m], v = 3 [m/s],

determine the value q0 = q(0) of an initial configuration and the value of the commanded velocity q̇(0)
at t = 0 that are needed for perfect reproduction of the desired trajectory.

b. In addition, with the robot in the initial configuration

qoff =

(
0

π/6

)
[rad] 6= q0,

using the two time constants τr,x = 0.1 and τr,y = 0.05 [s] for the desired exponential transients of
the trajectory tracking error components in the frame RFr(t), determine the initial value q̇(0) of the
control law that satisfies the above mentioned properties.

[210 minutes, open books]
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Solution
February 5, 2019

Exercise 1

The robot is a modified (imaginary) version of the Franka Emika, with 4 degrees of freedom only. A
possible DH frame assignment is shown in Fig. 3, with the associated parameters given in Tab. 1. The
signs of the non-zero symbolic constants are also reported in the table.

Figure 3: A possible DH frame assignment for the 4-dof robot of Fig. 1. Constant parameters are
shown on the left and joint variables shown on the right.

i αi ai di θi

1 −π/2 0 d1 > 0 q1

2 0 a2 > 0 0 q2

3 −π/2 a3 > 0 0 q3

4 0 0 d4 > 0 q4

Table 1: Parameters associated to the DH frames in Fig. 3.

Based on Tab. 1, the four DH homogeneous transformation matrices are:

0A1(q1) =

(
0R1(q1) 0p1

0T 1

)
=


cos q1 0 − sin q1 0

sin q1 0 cos q1 0

0 −1 0 d1

0 0 0 1

 ,

3



1A2(q2) =

(
1R2(q2) 1p2(q2)

0T 1

)
=


cos q2 − sin q2 0 a2 cos q2

sin q2 cos q2 0 a2 sin q2

0 0 1 0

0 0 0 1

 ,

2A3(q3) =

(
0R3(q3) 2p3(q3)

0T 1

)
=


cos q3 0 − sin q3 a3 cos q3

sin q3 0 cos q3 a3 sin q3

0 −1 0 0

0 0 0 1

 ,

3A4(q4) =

(
3R4(q4) 3p4

0T 1

)
=


cos q4 − sin q4 0 0

sin q4 cos q4 0 0

0 0 1 d4

0 0 0 1

 .

An efficient symbolic computation for obtaining the end-effector position p4 = p4(q) makes use of recursive
matrix-vector products in homogeneous coordinates as

(
p4(q)

1

)
= 0A1(q1)

1A2(q2)

2A3(q3)

3A4(q4)


0

0

0

1






=


cos q1 (a2 cos q2 + a3 cos(q2 + q3)− d4 sin(q2 + q3))

sin q1 (a2 cos q2 + a3 cos(q2 + q3)− d4 sin(q2 + q3))

d1 − a2 sin q2 − a3 sin(q2 + q3)− d4 cos(q2 + q3)

1

 =


px

py

pz

1

.
(1)

From the DH rules of frame assignment, we could eliminate two parameters by setting them to zero, i.e.,
d1 = 0 and d4 = 0, with simplifications in (1). The consequences would be that:

• all position vectors computed through the direct kinematics would be expressed with respect to a frame
RF0′ oriented like the original frame 0, but placed at the robot shoulder;

• the position of the origin O4 of the original frame 4 at the robot end-effector would be given in the new
frame 4′ by

4′
pO4

=
(

0 0 d4

)T
.

Figure 4 shows the robot in the stretched upward

configuration qs =
(
∗ −π/2 −π/2 ∗

)T
, where ‘∗’

could be any value. Taking ∗ = 0, the end-effector
position is evaluated from (1) as

ps = p4(qs) =

 −a3

0

d1 + a2 + d4

 .

Figure 4: The robot in a stretched configuration.

Finally, the absolute position of the TCP in the configuration q0 = 0, given its numerical value 4p4,TCP

in the end-effector frame, is computed as

(
p4,TCP (q0)

1

)
= 0A1(0)

1A2(0)

2A3(0)

3A4(0)


0

0.1

0.2

1




 =


a2 + a3

−0.1

d1 − d4 − 0.2

1

 [m].
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Exercise 2

In order to derive the symbolic expression of the 6× 4 geometric Jacobian J(q)(
v

ω

)
=

(
JL(q)

JA(q)

)
q̇ = J(q)q̇

of the spatial 4-dof robot of Fig. 1, the simplest way is to compute the 3× 4 upper block JL(q) by partial
differentiation of the position vector p4(q) in eq. (1), and the 3×4 lower block JA(q) by using the standard
formulas. From eq. (1), we obtain

JL(q) =

−s1(a2c2 + a3c23 − d4s23) −c1(a2s2 + a3s23 + d4c23) −c1(a3s23 + d4c23) 0

c1(a2c2 + a3c23 − d4s23) −s1(a2s2 + a3s23 + d4c23) −s1(a3s23 + d4c23) 0

0 d4s23 − a3c23 − a2c2 d4s23 − a3c23 0

 . (2)

where the usual compact notation has been used for trigonometric functions (e.g., c23 = cos(q2 + q3)). For
later analysis, it is also convenient to express the Jacobian in the rotated frame 1, or

1JL(q)= 0RT
1 (q1)JL(q) =

 0 − (a2s2 + a3s23 + d4c23) − (a3s23 + d4c23) 0

0 a2c2 + a3c23 − d4s23 a3c23 − d4s23 0

a2c2 + a3c23 − d4s23 0 0 0

. (3)

Further, being izi =
(

0 0 1
)T

for all i, we have

JA(q) =

(
z0 z1 z2 z3

)
=

(
0z0

0R1(q1)1z1
0R2(q1, q2)2z2

0R3(q1, q2, q3)3z3

)

=

 0 −s1 −s1 −c1s23

0 c1 c1 −s1s23

1 0 0 −c23

 ,

(4)

where 0Rj(q1, . . . , qj) = 0R1(q1)1R2(q2) . . . j−1Rj(qj), for j ≥ 1.

We immediately see that the last column of the two 3 × 4 Jacobian matrices in (2) and (3) is identically
zero. Thus, the rank of these matrices will drop from the maximum value 3 if and only if the determinant
of the first 3× 3 square blocks (denoted with an additional bar, i.e., J̄) is zero. Using (3), we have

det J̄L(q) = det 1J̄L(q) = a2 (a3s3 + d4c3) (a2c2 + a3c23 − d4s23) . (5)

Singularities of JL(q) occur when one (or both) of the factors in the right-hand side of (5) is zero. The
first factor depends only on q3 and vanishes when the forearm is ‘almost’ stretched or folded1. Actually,
being in practice a3 � d4, the roots are relatively close to q3 = ±π/2, where c3 ' 0). Indeed, according
to Fig. 3, only the stretched configuration (corresponding to the negative solution for q3) is of interest:
the other would lead to a self-collision between link 2 and link 3. The second factor in the right-hand side
of (5) vanishes when the origin O4 lies on axis of joint 1. In fact, from eq. (1) we have that

|a2c2 + a3c23 − d4s23| =
√
p2
x + p2

y,

namely, the distance from the axis z0 of the origin of frame 4 on the robot end-effector.

1In general, the solutions of the trigonometric equation a3 sin q3 + d4 cos q3 = 0 can be found by the algebraic
substitution q3 = tan(x/2), which converts the problem into that of finding the roots of a quadratic polynomial
(with a number of special cases). For instance, if a3 = 0.1 and d4 = 0.5, we find the two solutions q+

3 = 1.768 and

q−3 = −1.374 [rad]. For much smaller values of the ratio a3/d4, the two roots converge to q±3 = ±1.57 = ±π/2 [rad].
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Singularities of the lower part JA(q) of the geometric Jacobian of the robot are simpler to determine.
Discarding the third column in (4), which is identical to the second one, a singularity will occur if and
only if the determinant of the remaining matrix (denoted again with an additional bar) will vanish, i.e.,

det J̄A(q) = s23 = 0. (6)

When this happens, feasible angular velocities of the robot end-effector are characterized by

ω ∈ R{JA(q)}s23=0 = span


 0

0

1

 ,

−s1

c1

0


 .

In the configuration q0 = 0, the linear part of the geometric Jacobian is evaluated from (2) as

JL,0 = JL(0) =

 0 −d4 −d4 0

a2 + a3 0 0 0

0 −(a2 + a3) −a3 0

 =
(
J̄L,0 0

)
, (7)

where we have partitioned the first three columns from the fourth (zero) column. It is easy to see that
JL,0 (namely J̄L,0) has full rank equal to 3. Therefore, any Cartesian linear velocity v ∈ R3 can be
instantaneously realized by the robot in the given configuration. Moreover, joint velocities that lie in the
null space of JL,0 take the form

q̇a = ρ


0

0

0

1

 , for some ρ S 0. (8)

As a result, the problem of realizing the given linear Cartesian velocity vb =
(

1 0 1
)T

has an infinite
number of solutions. Among these, the joint velocity solution of minimum norm is given by

q̇b = J#
L,0vb =

(
J̄L,0 0

)#
vb =

(
J̄

#
L,0

0T

)
vb =

(
J̄
−1
L,0

0T

)
vb

=



0
1

a2 + a3
0

a3

a2d4
0 − 1

a2

−a2 + a3

a2d4
0

1

a2

0 0 0



 1

0

1

 =



0

a3

a2d4
− 1

a2

1

a2
− a2 + a3

a2d4

0


,

(9)

where we have used the properties of pseudoinverse matrices. All joint velocities that provide zero Cartesian
velocity error (i.e., such that JL,0 q̇ = vb) are obtained by adding to the particular solution (9) a null-space
joint velocity (8) for some scalar ρ:

q̇ = q̇b + q̇a =



0

a3

a2d4
− 1

a2

1

a2
− a2 + a3

a2d4

ρ


.
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Exercise 3

The reference trajectory pd(t) in the Cartesian plane is a circular path pd(s) traced clockwise with a linear
speed v(t) ≥ 0, and is specified thus as

pd(s) = C0 +R

 cos
s

R

− sin
s

R

 , s ≥ 0, s(t) =

∫ t

0

v(τ)dτ, t ≥ 0, (10)

satisfying s(0) = 0 and pd(0) = P 0. Note that the path is parametrized in this case by the arc length s,
and that the minus sign on the second component of the vector in (10) accounts for the clockwise tracing
of the circle. From (10), it follows

ṗd(t) =
dp(s)

ds
ṡ(t) = −v(t)

 sin
s(t)

R

cos
s(t)

R

 , t ≥ 0, (11)

providing ‖ṗd(t)‖ = v(t).

The robot direct and differential kinematics are given by

p =

(
L1 cos q1 + L2 cos(q1 + q2)

L1 sin q1 + L2 sin(q1 + q2)

)
= f(q) (12)

and

ṗ =
∂f(q)

∂q
q̇ =

(
− (L1 sin q1 + L2 sin(q1 + q2)) −L2 sin(q1 + q2)

L1 cos q1 + L2 cos(q1 + q2) L2 cos(q1 + q2)

)(
q̇1

q̇2

)
= J(q)q̇. (13)

In nominal conditions, when the initial robot configuration q0 is matched with the Cartesian point P 0,
i.e., f(q0) = pd(0) = P 0, the joint velocity command that guarantees perfect reproduction of the desired
trajectory pd(t) for all t ≥ 0 is given just by the feedforward command

q̇(t) = q̇d(t) = J−1(qd(t)) ṗd(t), with qd(t) = q0 +

∫ t

0

q̇d(τ)dτ. (14)

On the other hand, if there is an initial Cartesian error e0 = P 0 − f(q0) 6= 0, a feedback control action is
needed. Let the Cartesian trajectory tracking error be

e(t) = pd(t)− p(t), t ≥ 0, (15)

with p(t) = f(q(t)) from eq. (12). The error vector e ∈ R2 can be expressed in a rotated (planar and
right-handed) frame RFr(t), having the origin attached to the desired Cartesian position pd(t) of the
robot end-effector and the xr(t)-axis pointing along the (positive) tangent direction to the path, see Fig. 5.
Define the rotated tracking error as

Re(t) = R(t)e(t), with R(t) =

 − sin
s(t)

R
cos

s(t)

R

− cos
s(t)

R
− sin

s(t)

R

 =

(
xr(t) yr(t)

)
. (16)

Note that the time derivative of the (planar) rotation matrix R(t) in (16) is

Ṙ(t) =

 − cos
s(t)

R
− sin

s(t)

R

sin
s(t)

R
− cos

s(t)

R

 ṡ(t)

R
=

 − sin
s(t)

R
cos

s(t)

R

− cos
s(t)

R
− sin

s(t)

R


 0

ṡ(t)

R

− ṡ(t)
R

0


= R(t)S(ω(t)), with ω(t) =

ṡ(t)

R
,

(17)

7



where S(.) is a (planar) skew-symmetric matrix2.

pd(t)

x0

y0

p(t)

C0

R

xr(t)

yr(t)
e(t)

Figure 5: The reference frame RFr(t) used in the definition of the rotated tracking error.

The target dynamics of the rotated tracking error Re is specified by

Rė = −

(
kx 0

0 ky

)
Re = −K Re, with kx > 0, ky > 0, (18)

namely, as a linear and decoupled behavior along the axes of the rotated frame, with errors exponentially
converging to zero:

Rex(t) = Rex(0) exp(−kxt), Rey(t) = Rey(0) exp(−kyt). (19)

In these exponential evolutions, the time constants are the inverse of the gains: τr,x = 1/kx, τr,y = 1/ky.
Since

Rė = Rė + Ṙ e = R
(
ė + Se

)
= R

(
ṗd − J(q)q̇ + Se

)
,

in order to obtain (18), the control law should be speficied as

q̇(t) = J−1(q(t))
(
ṗd(t) + S(ω(t))e(t) + RT(t)K Re(t)

)
= J−1(q(t))

(
ṗd(t) +

(
S(ω(t)) + RT(t)KR(t)

)
(pd(t)− f(q(t))

)
.

(20)

We note that the time-varying gain matrix RTKR is required in order to obtain a constant and decoupled
error dynamics in the rotated frame. Also, when the initial tracking error is zero, one has q(t) = qd(t) for
all t ≥ 0, and the control law (20) collapses into a feedforward command only, as given by (14).

We move next to the application of the above formulas with the numerical data given for the problem. An
initially matched robot configuration q0 is determined by the desired initial Cartesian point P 0 and the
robot inverse kinematics. From the center C0 of the circular path and its radius R, we have

C0 =

(
0.2

0.3

)
, R = 0.15 ⇒ P 0 =

(
0.35

0.3

)
[m].

From the inverse kinematics equations of a planar 2R robot,

c2 =
P 2

0,x + P 2
0,y − L2

1 − L2
2

2L1L2
, s2 = ±

√
1− c22 ⇒ q2 = ATAN2{s2, c2},

2If the path were linear, the orientation of the frame attached to the path would be constant and so R. Being
Ṙ = 0, also S would vanish in the following formulas.
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and

c1 =
P0,x(L1 + L2c2) + P0,yL2s2

L+
1 L

2
2 + 2L1L2c2

, s1 =
P0,y(L1 + L2c2)− P0,xL2s2

L+
1 L

2
2 + 2L1L2c2

⇒ q1 = ATAN2{s1, c1},

using also the robot link lengths L1 = L2 = 0.5 [m], we obtain the two solutions

qup
0 =

(
qup1

qup2

)
=

(
1.8003

−2.1834

)
[rad], qdown

0 =

(
qdown
1

qdown
2

)
=

(
−0.3831

2.1834

)
[rad]. (21)

With these configurations and the desired initial speed v = 3 [m/s], we obtain from (13) and (14) the two
alternative initial commanded velocities

q̇up(0) = J−1(qup
0 )ṗd(0) =

(
7.6055

−12.2087

)
[rad/s], q̇down(0) = J−1(qdown

0 )ṗd(0) =

(
−10.7179

−6.6039

)
[rad/s].

(22)
These joint velocities will achieve perfect reproduction of the desired trajectory at t = 0. The values in (22)
are relatively large because of the large speed v that is being requested at the Cartesian level.

Instead, when the robot is initially in

qoff =

(
0

π/6

)
[rad] ⇒ e0 = pd(0)− f(qoff) =

(
−0.583

0.05

)
[m],

we need to use the control law (20) at t = 0. Therein, considering also the desired time constants
τr,x = 0.1 and τr,y = 0.05 [s], the diagonal gain matrix K, the rotation matrix R(0), the effective gain
matrix Reff(0) = RT(0)KR(0), and the skew-symmetric matrix S(ω(0)) are evaluated as

K =

(
10 0

0 20

)
, R(0) =

(
0 1

−1 0

)
,

Reff(0) =

(
20 20

−20 10

)
, S(ω(0)) =

(
0 20

−20 0

)
.

As a result, the joint velocity control that will be applied at the initial instant will be

q̇(0) =

(
20.2224

−22.4186

)
[rad/s]. (23)

These are indeed extremely large values. However, they are needed in order to obtain the specified fast
rate of exponential decay for the trajectory tracking error (the time constants are too small, and could be
possibly increased to obtain smaller values in (23)).

∗ ∗ ∗ ∗ ∗
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