
Robotics I
June 11, 2018

Exercise 1

Consider the planar 2R robot in Fig. 1, having a L-shaped second link. A frame RFe is attached
to the gripper mounted on the robot end effector.
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Figure 1: A planar 2R robot with L-shaped second link.

• Assign the link frames and define the joint variables q according to the Denavit-Hartenberg
(DH) convention, and complete the associated table of parameters.

• Determine the robot direct kinematics, specifying the position pe(q) ∈ R3 of the origin of frame
RFe and the end-effector orientation as expressed by the rotation matrix 0Re(q) ∈ SO(3).

• Sketch the robot in the zero configuration (q = 0); find and sketch also the configuration qs

where the robot gripper is pointing in the direction y0 and is the farthest away from axis x0.

• Draw the primary workspace of the robot using the symbolic values A, B and C for the lengths.

• Provide all closed-form solutions to the inverse kinematics problem, when the end-effector posi-
tion p̄e ∈ R2 (i.e., reduced to the plane of motion) is given as input.

• Derive the 2× 2 Jacobian J in
ve = J(q)q̇,

where ve = ˙̄pe ∈ R2 is the linear velocity of the end-effector in the plane.

• Determine all singular configurations of the Jacobian matrix J(q). In each of these singularities,
provide a basis for the null space and the range space of J .

• Using the numerical data

A = 0.6, B = 0.3, C = 0.4 [m] (1)

– find all joint configurations qsol associated to the end-effector position p̄e =(0.6 −0.5)T [m];

– for each qsol, compute the joint velocity q̇sol that realizes the velocity ve = (1 0)T [m/s];
are these joint velocities equal or different in norm? why?

Exercise 2

For the robot in Exercise 1, find the minimum time rest-to-rest motion between q0 = (1 − 0.5)T

and qf = (0 0.2)T [rad], when the joint velocities and accelerations are subject to the bounds

|q̇1| ≤ V1 = 0.5 [rad/s], |q̈1| ≤ A1 = 0.8 [rad/s2],

|q̇2| ≤ V2 = 0.8 [rad/s], |q̈2| ≤ A2 = 0.5 [rad/s2].
(2)

Draw accurately the minimum time velocity profiles of the two joints, when a coordinated motion
is also required.

[180 minutes, open books but no computer or smartphone]
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Solution

June 11, 2018

Exercise 1

A possible DH frame assignment and the associated table of parameters are reported in Fig. 2 and
Tab. 1, respectively.
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Figure 2: DH frame assignment for the planar 2R robot with a L-shaped second link.

i αi ai di θi

1 0 A 0 q1

2 0 D 0 q2

Table 1: Parameters associated to the DH frames in Fig. 2.

Based on Tab. 1, the DH homogeneous transformation matrices are:

0A1(q1) =


cos q1 − sin q1 0 A cos q1

sin q1 cos q1 0 A sin q1

0 0 1 0

0 0 0 1

 =

(
0R1(q1) 0p1(q1)

0T 1

)
,

1A2(q2) =


cos q2 − sin q2 0 D cos q2

sin q2 cos q2 0 D sin q2

0 0 1 0

0 0 0 1

 =

(
1R2(q2) 1p2(q2)

0T 1

)
,

where D =
√
B2 + C2 > 0. Moreover, the constant homogeneous transformation between the
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(last) DH frame RF2 and the end-effector frame RFe is given by

2T e =


cosβ − sinβ 0 0

sinβ cosβ 0 0

0 0 1 0

0 0 0 1

 =

(
2Re 0

0T 1

)
.

with β = arctan(B/C) > 0. The requested direct kinematics is given by

pe(q) = 0pe(q) = 0p1(q1) + 0R1(q1) 1p2(q2) =

 A cos q1 +D cos(q1 + q2)

A sin q1 +D sin(q1 + q2)

0

 =

(
p̄e(q)

0

)
(3)

and

0Re(q) = 0R1(q1) 1R2(q2) 2Re =

 cos(q1 + q2 + β) − sin(q1 + q2 + β) 0

sin(q1 + q2 + β) cos(q1 + q2 + β) 0

0 0 1

 . (4)

It is evident from (3) that the kinematics of this robot is the same as that of a standard planar
2R arm, once we use the value D as length of an equivalent straight second link. On the other
hand, the orientation of the end-effector frame is affected by the constant bias angle β, see (4). A
sketch of the robot in the zero configuration is given in Fig. 3a, while Fig. 3b shows the requested
configuration qs = (π/2,− arctan(B/C)), with the gripper pointing in the y0 direction and placed
the farthest away (at a distance A+ C) from the x0 axis. The primary workspace of the robot is
drawn in Fig. 4, with inner radius and outer radius given, respectively, by

r = |A−D| , R = A+D.
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Figure 3: Two special robot postures: (a) the configuration q = 0, and (b) the configuration
qs = (π/2,− arctan(B/C)), in which the robot gripper points in the direction y0 while being the
farthest away from the base axis x0.
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Figure 4: Primary workspace of the planar 2R robot with a L-shaped second link and generic
lengths A, B, and C (with D =

√
B2 + C2).

From the previous argument, the inverse kinematics problem for this robot has two solutions (out
of singularities). Given an end-effector position p̄e = (px, py) inside the primary workspace, we
have

c2 =
p2x + p2y −A2 −D2

2AD
∈ (−1, 1), s2 = ±

√
1− c22, (5)

and then (for each of the two possible signs of s2)

q1 = ATAN2 {py(A+Dc2)− pxDs2, px(A+Dc2) + pyDs2)} , q2 = ATAN2 {s2, c2} . (6)

The requested (analytic) Jacobian is computed as

J(q) =
∂p̄e(q)

∂q
=

(
−(A sin q1 +D sin(q1 + q2)) −D sin(q1 + q2)

A cos q1 +D cos(q1 + q2) D cos(q1 + q2)

)
,

with detJ(q) = AD sin q2. Singularities occur at q2 = {0, π} (with arbitrary q1). For q2 = 0 (and
a generic q1), we have

J(q1, 0) =

(
−(A+D) sin q1 −D sin q1

(A+D) cos q1 D cos q1

)
⇒ N{J} = ν

(
−D
A+D

)
, R{J} = ρ

(
sin q1

− cos q1

)
,

while at q2 = π

J(q1, π) =

(
−(A−D) sin q1 D sin q1

(A−D) cos q1 −D cos q1

)
⇒ N{J} = ν

(
D

A−D

)
, R{J} = ρ

(
sin q1

− cos q1

)
,

where ν and ρ are two scaling factors.

Using the numerical data in (1), we have A = 0.6 and D = 0.5 [m]. For pe = (0.6 − 0.5)T [m], we
obtain from (5–6) the two inverse kinematic solutions

qsol,a =

(
1.3895

π/2

)
[rad] =

(
−79.61◦

90◦

)
, qsol,b =

(
0

−π/2

)
[rad] =

(
0◦

−90◦

)
.
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In these two (nonsingular) configurations, we solve the inverse differential kinematics problem for
ve = (1 0)T [m/s] as

q̇sol,a = J−1(qsol,a)ve =

(
0.5 −0.0902

0.6 0.4918

)−1(
1

0

)
=

(
1.6393

−2

)
[rad/s],

q̇sol,b = J−1(qsol,b)ve =

(
0.5 0.5

0.6 0

)−1(
1

0

)
=

(
0

2

)
[rad/s],

The norms of these two joint velocity vectors are different, namely∥∥q̇sol,a

∥∥ = 2.5860,
∥∥q̇sol,b

∥∥ = 2.

This should not come out unexpected because the given problem (including the direction of ve

with the respect to the robot postures) has no special symmetries.

Exercise 2

The time-optimal profile for the desired rest-to-rest motion from q0 to qf under the bounds given
in (2) is bang-coast-bang in acceleration for the first joint and bang-bang only for the second. In
fact, the joint displacements are

∆ = qf − q0 =

(
−1

0.7

)
=

(
∆1

∆2

)
,

and the condition for the existence of a time interval when a joints is cruising at its maximum
velocity is satisfied for the first joint, but not for the second:

|∆1| = 1 > 0.35 =
0.52

0.8
=
V 2
1

A1
, |∆2| = 0.7 < 1.28 =

0.82

0.5
=
V 2
2

A2
.

The minimum time for the first joint is then

T1 =
|∆1|A1 + V 2

1

V1A1
= 2.6250 [s].

For the second joint, we have instead a triangular velocity profile that is symmetric w.r.t. the middle
instant of motion T2/2. At t = T2/2, the joint reaches its maximum velocity Vm,2 = A2T2/2 < V2.
The area under this velocity profile should be equal to the displacement (in absolute value) for the
second joint. Thus,

(area =)
T2Vm,2

2
=
A2T

2
2

4
= |∆2| ⇒ T2 =

√
4 |∆2|
A2

= 2.3664 [s].

The minimum motion time is therefore

Tmin = max{T1, T2} = max{2.6250, 2.3664} = 2.6250 [s].

and is imposed by the first joint. In order to have a coordinated joint motion, the second joint
should then slow down a bit, by using an acceleration/deceleration ±Am,2 (whose absolute value
is less than A2) so as to complete its motion exactly at t = Tmin. Thus,

(area =)
Am,2 T

2
min

4
= |∆2| ⇒ Am,2 =

4 |∆2|
T 2
min

= 0.4063 [rad/s2].

Accordingly, Vm,2 = Am,2Tmin/2 = 0.5333 [rad/s2] is the velocity reached by the second joint at
the middle instant of motion. The velocity profiles of the two joints for the obtained coordinated
motion in minimum time are shown in Fig. 5.
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Figure 5: The profiles of the joint velocities achieving the desired coordinated motion in minimum
time Tmin = 2.6250 s.
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