
Robotics I
February 5, 2018

Exercise 1

The Italian robot manufacturer Comau has recently put on the market two educational manipulators of
small size and weight called e.Do. The version with four actuated revolute joints is shown in Fig. 1.
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Figure 1: The 4R e.Do manipulator by Comau with base and end-effector frames [left] and its
relevant dimensions [right].

Assign the link frames according to the Denavit-Hartenberg (DH) convention and complete the associated
table of parameters so that all constant parameters are non-negative. Specify also their numerical values.
Draw the frames and fill in the table directly on the extra sheet #1 provided separately. The two DH
frames 0 and 4 are already assigned and should not be modified. Finally, write the DH homogeneous
transformation matrices. [Please, make clean drawings and return the completed sheet with your name
written on it.]

Exercise 2

A number of statements are reported on the extra sheet #2, regarding sensor devices for fixed-base ma-
nipulators and related measurement issues. Check if each statement is True or False, providing also a
very short motivation/explanation for your answer. [Return the completed sheet with your name on it.]

Exercise 3

Determine the symbolic expression of the 6 × 4 geometric Jacobian J(q) for the robot in Fig. 1 (do not
enter numerical values). Partition this matrix in blocks as

J(q) =

(
JL(q)

JA(q)

)
, v = JL(q)q̇, ω = JA(q)q̇. (1)

• Find all configurations q∗
L, if any, where JL(q) loses rank.

• Determine the range space of all feasible angular velocities ω ∈ R3.

• Find all singular configurations q∗ of J(q), if any.

Choose next a configuration q0 where JL is full rank, and substitute all the available numerical data in
this matrix. Sketch this configuration and compute then a non-zero joint velocity q̇0 ∈ R4 such that the
resulting linear velocity v of the robot end-effector at q0 is identically zero.

[turn for next exercise]
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Exercise 4

Plan a cubic spline trajectory q(t) that interpolates the following data at given time instants

t1 = 1, q(t1) = 45◦, t2 = 2, q(t2) = 90◦, t3 = 2.5, q(t3) = −45◦, t4 = 4, q(t4) = 45◦, (2)

starting with q̇(t1) = 0 and arriving with q̇(t4) = 0.

• Give an expression and the associated numerical values of the coefficients of each cubic polynomial.

• Find the maximum (absolute) values attained by the velocity q̇(t) and the acceleration q̈(t) over the
whole motion interval [t1, t4], as well as the time instants at which these occur.

• Check if the following bounds are satisfied throughout the motion,

|q̇(t)| ≤ Vmax = 250◦/s, |q̈(t)| ≤ Amax = 1000◦/s2, (3)

and, if needed, determine the minimum uniform scaling factor for the trajectory so that feasibility
is recovered.

• Provide the total motion time of the feasible trajectory and sketch as accurately as possible the
profiles of the resulting velocity and acceleration.

[210 minutes, open books but no computer or smartphone]
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Robotics I - Sheet for Exercise 2
February 5, 2018

Name:

Consider motion sensing devices available for fixed-base robot manipulators and related issues in the
measurement process. Check if each of the following statements is True or False, and provide a very short
motivating/explanation sentence.

1. Encoders of the absolute type cannot be used for estimating joint velocity.

True False

2. Encoders should never be mounted beyond the reduction element in motor-link transmission systems.

True False

3. Dynamic repeatability of a robot improves when the robot is moving at slow speed.

True False

4. Absolute encoders need no calibration before being operative.

True False

5. For estimating velocity, integration of accelerometer data outperforms differentiation of encoder data.

True False

6. Vision systems are preferred when a direct measure of the robot end-effector position is needed.

True False

7. An incremental encoder with 6000 ppt has a better resolution than an absolute encoder with 15 tracks.

True False

8. With a sensor mounted on the motor, the larger is the reduction ratio N of the transmission, the
better the resolution of the link position estimate is.

True False

9. In general, repeatability of a sensor can be improved by calibration, whereas accuracy cannot.

True False

10. Sensor devices should be used only in their domain of linearity (within 2÷ 3% of deviation).

True False



Solution
February 5, 2018

Exercise 1

A possible DH frame assignment and the associated table of parameters are reported in Fig. 2 and Tab. 1,
respectively, together with the numerical values of the constant parameters (all non-negative, as requested).
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Figure 2: A DH frame assignment for the Comau e.Do robot, with associated length parameters.

i αi ai di θi

1 π/2 0 d1 = 202 q1

2 0 a2 = 210.5 0 q2

3 0 a3 = 268 0 q3

4 0 a4 = 174.5 0 q4

Table 1: Parameters associated to the DH frames in Fig. 2. Lengths are in [mm].

The robot is equivalent to a planar 3R structure in a vertical plane, mounted on a rotating first axis. Based
on Tab. 1, the four DH homogeneous transformation matrices are:

0A1(q1) =


cos q1 0 sin q1 0

sin q1 0 − cos q1 0

0 1 0 d1

0 0 0 1

, i−1Ai(qi) =


cos qi − sin qi 0 ai cos qi

sin qi cos qi 0 ai sin qi

0 0 1 0

0 0 0 1

, i = 2, 3, 4. (4)
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Exercise 2

1. Encoders of the absolute type cannot be used for estimating joint velocity.

False. Both types can be used, although incremental encoders output directly ∆q (and ∆q/∆t ' q̇).

2. Encoders should never be mounted beyond the reduction element in motor-link transmission systems.

False. An encoder on the link side provides a better measure of its position (e.g., for flexible shafts).

3. Dynamic repeatability of a robot improves when the robot is moving at slow speed.

True. Position errors in the execution of reference trajectories usually increase with larger speeds.

4. Absolute encoders need no calibration before being operative.

False. A ‘homing’ at start is not needed, but calibration will recover an erroneous/rotated mounting.

5. For estimating velocity, integration of accelerometer data outperforms differentiation of encoder data.

False. All the rest being equal, integration of signals is usually subject to drifts over time.

6. Vision systems are preferred when a direct measure of the robot end-effector position is needed.

True. An external camera senses directly the position, by-passing inaccuracies of robot kinematics.

7. An incremental encoder with 6000 ppt has a better resolution than an absolute encoder with 15 tracks.

False. ∆θinc = 360◦/6000=0.06◦ (0.015◦ with quadrature). ∆θabs = 360◦/215 =0.011◦ is better.

8. With a sensor mounted on the motor, the larger is the reduction ratio N of the transmission, the
better the resolution of the link position estimate is.

True. Given a resolution ∆θm on the motor side, the resolution on the link side is ∆θ` = ∆θm/N .

9. In general, repeatability of a sensor can be improved by calibration, whereas accuracy cannot.

False. Calibration affects accuracy reducing systematic errors. Repeatability relies on sensor quality.

10. Sensor devices should be used only in their domain of linearity (within 2÷ 3% of deviation).

True. Superposition of physical effects should hold on measurements, possibly after their equalization.

Exercise 3

Using (4), we compute first the direct kinematics of the end-effector position as

phom =

(
p

1

)
= 0A1(q1)

1A2(q2)

2A3(q3)

3A4(q4)


0
0
0
1




 =


c1 (a2c2 + a3c23 + a4c234)

s1 (a2c2 + a3c23 + a4c234)

a2s2 + a3s23 + a4s234
1

 =


px
py
pz
1


(5)

with the usual shorthand notation for trigonometric terms (e.g., s234 = sin(q2 + q3 + q4)). The linear part
of the geometric Jacobian is easily obtained by time differentiation of p in (5) as

v = ṗ =
∂p(q)

∂q
q̇ = JL(q)q̇, (6)

yielding

JL(q)=

−s1 (a2c2 + a3c23 + a4c234) −c1 (a2s2 + a3s23 + a4s234) −c1 (a3s23 + a4s234) −a4c1s234
c1 (a2c2 + a3c23 + a4c234) −s1 (a2s2 + a3s23 + a4s234) −s1 (a3s23 + a4s234) −a4s1s234

0 a2c2 + a3c23 + a4c234 a3c23 + a4c234 a4c234

 .

(7)
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For analysis purposes, the structure of matrix JL can be manipulated by (invertible) transformations on
the rows and on the columns. It is easy to see that simplifications are obtained by writing the Jacobian in
the rotated DH frame 1 (i.e., expressing linear velocity as 1v = 0RT

1 (q1)v) and by factoring out recursive
expressions in (7). Using the rotational part of matrix 0A1(q1) in (4), the first step leads in fact to

1JL(q) = 0RT
1 (q1)JL(q) =

 c1 s1 0

0 0 1

s1 −c1 0

JL(q) =

=

 0 − (a2s2 + a3s23 + a4s234) − (a3s23 + a4s234) −a4s234
0 a2c2 + a3c23 + a4c234 a3c23 + a4c234 a4c234

− (a2c2 + a3c23 + a4c234) 0 0 0

 .

(8)
The second step requires post-multiplication of matrix 1JL by a non-singular constant matrix H as follows:

1JL,abs(q) = 1JL(q)H = 1JL(q)


1 0 0 0

0 1 0 0

0 −1 1 0

0 0 −1 1

 =

=

 0 −a2s2 −a3s23 −a4s234
0 a2c2 a3c23 a4c234

− (a2c2 + a3c23 + a4c234) 0 0 0

 .

(9)

The subscript ‘abs’ is there to remind that the upper two rows and last three columns of the obtained
matrix have the same structure of the Jacobian that we would have when considering a planar 3R robot
and using absolute coordinates w.r.t. to a horizontal axis.

Analyzing the rank of 1JL,abs(q) is easy. The last row will become dependent from the other two (and
actually vanish) if and only if

q∗
L : a2c2 + a3c23 + a4c234 =

√
p2x + p2y = 0, (10)

namely, if the robot end-effector lies on the axis z0 of joint 1. Moreover, the first two rows (deleting their
useless, zero first column) will be linearly dependent if and only if the three 2 × 2 minors that can be
extracted are all equal to zero, or

s3 = 0, s4 = 0, s34 = 0 ⇐⇒ q∗
L : q3 = {0, π}, q4 = {0, π}, (11)

namely when the third and fourth link are aligned with the second link, either stretched or folded. Each
of the two singularity types (10) and (11) reduces by one the rank of 1JL,abs(q), which is clearly equal to
the rank of JL(q). When the arm is fully aligned with the axis of joint 1, either in a stretched or in a
folded configuration, then rank JL(q) = 1 (i.e., it drops by two at the intersection of the singularities).

Since all joints are revolute, the angular part of the geometric Jacobian is obtained from the general
expression

JA(q) =
(
z0 z1 z2 z3

)
, (12)

where zi−1 is the unit vector aligned with the ith joint axis, and expressed in the base frame (of index 0).
Using the DH rotation matrices, we have

z0 =

 0

0

1

, z1 = 0R1(q1)z0, z2 = 0R1(q1)1R2(q2)z0, z3 = 0R1(q1)1R2(q2)2R3(q3)z0, (13)
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and performing easy computations

z0 =

 0

0

1

, z3 = z2 = z1 =

 s1

−c1
0

 . (14)

Therefore, we obtain

JA(q) =

 0 s1 s1 s1

0 −c1 −c1 −c1
1 0 0 0

 . (15)

This matrix has constant rank equal to two. All angular velocities that can be generated as ω = JA(q)q̇
take the form

ω = α

 0

0

1

+ β

 s1

−c1
0

, for any α, β. (16)

Vice versa, angular velocities that cannot be generated by this robot take the form

ω = γ

 c1

s1

0

, for any γ 6= 0. (17)

For further analysis, matrix JA(q) can be written in the rotated DH frame 1, similarly to (8). We obtain
the constant matrix

1JA = 0RT
1 (q1)JA(q) =

 0 0 0 0

1 0 0 0

0 1 1 1

 . (18)

Observing that

rank J(q) = rank

(
JL(q)

JA(q)

)
= rank

(
1JL,abs(q)

1JA

)
, (19)

we can stack the two matrices in eq. (9) and (18) and analyze the rank of this 6× 4 matrix. Deleting the
third row (as linearly dependent on the fifth row) and the fourth (null) row, we are left with the 4 × 4
matrix

J red(q) =


0 −a2s2 −a3s23 −a4s234
0 a2c2 a3c23 a4c234

1 0 0 0

0 1 1 1

 . (20)

Thus, a singularity of J(q) (rank J(q∗) < 4) will occur if and only if the determinant of J red(q) vanishes,
or

detJ red(q) = 0 ⇐⇒ q∗ : a2a3s3 + a3a4s4 − a2a4s34 = 0. (21)

We note that when the robot is in a stretched of folded configuration and JL(q) loses rank, as expressed
by (11), then condition (21) is also satisfied and J(q) is necessarily singular too (i.e., JA(q) does not help
in recovering full rank).

Finally, we choose a simple configuration that is nonsingular for JL(q) in (7), say q0 =
(

0 0 π/2 0
)T

(the robot has the second link horizontal and the third and fourth links vertical, pointing upwards: a sketch
is left to the reader), and plug in the numerical values for a2 = 210.5, a3 = 268, and a4 = 174.5 [mm], as
found in Exercise #1. We obtain the numerical matrix (with rank equal to 3)

JL(q0) =

 0 −442.5 −442.5 −174.5

210.5 0 0 0

0 210.5 0 0

 . (22)

8



A velocity vector q̇0 in the null space of JL(q0) is

q̇0 =
(

0 0 −0.3669 0.9303
)T

[rad/s],

and it is easy to see that JL(q0)q̇0 = 0.

Exercise 4

Using time normalization, the three cubic tracts of the interpolating spline are conveniently defined as

qA(τA) = q1 + a1τA + a2τ
2
A + a3τ

3
A, τA =

t− t1
t2 − t1

∈ [0, 1], t ∈ [t1, t2] (23)

qB(τB) = q2 + b1τB + b2τ
2
B + b3τ

3
B , τB =

t− t2
t3 − t2

∈ [0, 1], t ∈ [t2, t3] (24)

qC(τC) = q3 + c1τC + c2τ
2
C + c3τ

3
C , τC =

t− t3
t4 − t3

∈ [0, 1], t ∈ [t3, t4], (25)

with the nine coefficients a1, . . . , c3 determined by satisfying the nine boundary conditions

qA(1) = q2,

qB(1) = q3,

qC(1) = q4,

q̇A(0) = 0,

q̇C(1) = 0,

q̇A(1) = q̇B(0) [ = v2 ] ,

q̇B(1) = q̇C(0) [ = v3 ] ,

q̈A(1) = q̈B(0),

q̈B(1) = q̈C(0).
(26)

Assume, for the time being, that we know the value of the velocities v2 and v3 in the two intermediate knots
(at t = t2 and t = t3, respectively). The coefficients of each of the three cubic polynomials would then be
completely defined by the four local boundary conditions on position and velocity at the two extremes of
their interval of definition. Performing computations for the cubic A yields the coefficients

a1 = 0, a2 = 3(q2 − q1)− v2(t2 − t1), a3 = v2(t2 − t1)− 2(q2 − q1), (27)

and thus

q̈A(1) =
2a2 + 6a3
(t2 − t1)2

=
4v2

t2 − t1
− 6(q2 − q1)

(t2 − t1)2
. (28)

Similarly, for the cubic B

b1 = v2(t3 − t2), b2 = 3(q3 − q2)− (2v2 + v3)(t3 − t2), b3 = −2(q3 − q2) + (v2 + v3)(t3 − t2), (29)

and thus

q̈B(0) =
2b2

(t3 − t2)2
=

6(q3 − q2)

(t3 − t2)2
− 4v2 + 2v3

t3 − t2
(30)

and

q̈B(1) =
2b2 + 6b3
(t3 − t2)2

=
2v2 + 4v3
t3 − t2

− 6(q3 − q2)

(t3 − t2)2
. (31)

Finally, for the cubic C

c1 = v3(t4 − t3), c2 = 3(q4 − q3)− 2v3(t4 − t3), c3 = v3(t4 − t3)− 2(q4 − q3), (32)

and thus

q̈C(0) =
2c2

(t4 − t3)2
=

6(q4 − q3)

(t4 − t3)2
− 4v3
t4 − t3

. (33)

Imposing continuity of the acceleration at the internal knots

q̈A(1) = q̈B(0), q̈B(1) = q̈C(0),

9



and using eqs. (28), (30–31) and (33), leads to the linear system of equations

A

(
v2
v3

)
= b, (34)

with1

A =

 2(t3 − t1) (t2 − t1)

(t4 − t3) 2(t4 − t2)

 , b =

 3(q3 − q2)
t2 − t1
t3 − t2

+ 3(q2 − q1)
t3 − t2
t2 − t1

3(q4 − q3)
t3 − t2
t4 − t3

+ 3(q3 − q2)
t4 − t3
t3 − t2

.

 .

Replacing the numerical data (degrees are used everywhere here), the system is solved as(
v2
v3

)
= A−1b =

(
−175.7143
−215.3571

)
[◦/s],

and the coefficients (27), (29), and (32) of the three cubic polynomials take then the numerical values

a0 = q1 = 45, a1 = 0, a2 = 310.7143, a3 = −265.7143,

b0 = q2 = 90, b1 = −87.8571, b2 = −121.6071, b3 = 74.4643,

c0 = q3 = −45, c1 = −323.0357, c2 = 916.0714, c3 = −503.0357.

The plots of the interpolating cubic spline q(t), for t ∈ [t1, t4] = [1, 4], and of its velocity and acceleration
are shown in Fig. 3. We can see that velocity is peaking between knots 2 and 3, whereas the maximum
(absolute) value of the acceleration is reached at knot 2. Apart from this visualization, we should work
indeed analytically in order to check if and how the bounds (3) on the velocity and acceleration are satisfied.

Being piecewise linear, the spline acceleration can assume its maximum values only at the boundaries of
each time sub-interval. Therefore, we evaluate the acceleration at the knots (expressed in [◦/s2]):

A1 = q̈(t1) = q̈A(0) =
2a2

(t2 − t1)2
= 621.4286,

A2 = q̈(t2) = q̈B(0) =
2b2

(t3 − t2)2
= −972.8571,

A3 = q̈(t3) = q̈C(0) =
2c2

(t4 − t3)2
= 814.2857,

A4 = q̈(t4) = q̈C(1) =
2c2 + 6c3
(t4 − t3)2

= −527.1429.

(35)

As a result, none of the (absolute) values exceeds the limit of Amax = 1000 ◦/s2.

On the other hand, being piecewise quadratic, the spline velocity can assume its maximum values only
where the acceleration is zero, or at the boundaries of each time sub-interval. An instant with zero
acceleration occurs inside a given sub-interval if and only if the acceleration changes sign between the
boundary knots (i.e., AiAi+1 < 0). Looking at (35), this happens in fact in all three intervals. We should
test then the spline velocity also at the instants tacc0,i where acceleration vanishes, or

tacc0,i = ti +
|Ai|

|Ai −Ai+1|
(ti+1 − ti), i = 1, 2, 3.

1The first equation has been multiplied conveniently by (t3 − t2)(t2 − t1)/2, the second by (t4 − t3)(t3 − t2)/2.
This makes A and b in eq. (34) identical to those in the lecture slides, for N = 4 and with v1 = v4 = 0.
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Figure 3: Planned spline trajectory q(t), velocity, and acceleration. Total time T = t4 − t1 = 3 [s].
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Therefore, we first evaluate the velocity at the knots (expressed in [◦/s]):

v1 = q̇(t1) = 0,

v2 = q̇(t2) = −175.7143,

v3 = q̇(t3) = −215.3571,

v4 = q̇(t4) = 0.

(36)

Next, having set2

τacc0,i =
tacc0,i − ti
ti+1 − ti

=
|Ai|

|Ai −Ai+1|
=

|Ai|
|Ai|+ |Ai+1|

∈ [0, 1], i = 1, 2, 3, (37)

we evaluate velocity also in the intermediate instants (expressed in [◦/s]):

q̇(tacc0,1) = q̇A(τacc0,1) =
a1 + 2a2τacc0,1 + 3a3τ

2
acc0,1

t2 − t1
= 121.1118,

q̇(tacc0,2) = q̇B(τacc0,2) =
b1 + 2b2τacc0,2 + 3b3τ

2
acc0,2

t3 − t2
= −308.1115,

q̇(tacc0,3) = q̇C(τacc0,3) =
c1 + 2c2τacc0,3 + 3c3τ

2
acc0,3

t4 − t3
= 155.3640.

(38)

As a result, the velocity at the time instant tacc0,2 = 2.2722 [s] (in the second interval) is the only one that
violates the bound specified in (3): Vpeak = |q̇(tacc0,2)| = 308.1115 > 250 = Vmax.

In order to recover feasibility, we should then uniformly scale the total motion time T = t4 − t1 = 3 s by
the factor

k =
Vpeak

Vmax
= 1.2324 ⇒ Tscaled = kT = k(t4 − t1) = 3.6973. (39)

The spline trajectory qscaled(tscaled), for tscaled ∈ [t1, t1 + Tscaled] = [1, 4.6973], is shown in Fig. 4, together
with its scaled velocity and acceleration. Some caution should be used to handle a non-zero value for the
initial time t1 = 1 in the planned motion. We have tscaled = t1 + k(t− t1) in this case (rather than simply
tscaled = kt), and the interpolation of the original knots will be achieved at the new instants

t1 → tscaled,1 = t1 = 1 (unchanged)⇒ q1, t2 → tscaled,2 = t1 + k(t2 − t1) = 2.2324⇒ q2,

t3 → tscaled,3 = t1 + k(t3 − t1) = 2.8487⇒ q3, t4 → tscaled,4 = t1 + k(t4 − t1) = 4.6973⇒ q4.

Accordingly,

qscaled(tscaled) = q(t), q̇scaled(tscaled) =
q̇(t)

k
, q̈scaled(tscaled) =

q̇(t)

k2
.

The scaled velocity (in absolute value) reaches now its limit Vscaled,peak = Vmax = 250◦/s at the new time
instant tscaled,peak = t1 + k (tacc0,2 − t1) = 1 + 1.2324 · (2.2722− 1) = 2.5679 s.

∗ ∗ ∗ ∗ ∗

2The last equality in (37) holds because of the assumed condition Ai Ai+1 < 0, under which the zero acceleration
instant occurs inside [ti, ti+1].
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Figure 4: Scaled spline trajectory qscaled(tscaled), with velocity and acceleration. The scaled total
time of motion is Tscaled = 3.6973 [s].
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