
Robotics I
April 11, 2017

Exercise 1

The kinematics of a 3R spatial robot is specified by the Denavit-Hartenberg parameters in Tab. 1.

i αi di ai θi

1 π/2 L1 0 q1

2 0 0 L2 q2

3 0 0 L3 q3

Table 1: Table of DH parameters of a 3R spatial robot.

• Given a position p ∈ R3 of the origin of the end-effector frame, provide the analytic expression
of the solution to the inverse kinematics problem.

• For L1 = 1 [m] and L2 = L3 = 1.5 [m], determine all inverse kinematics solutions in numerical
form associated to the end-effector position p =

(
−1 1 1.5

)T [m].

Exercise 2

A robot joint should move in minimum time between an initial value qa and a final value qb, with
an initial velocity q̇a and a final velocity q̇b, under the bounds |q̇| ≤ V and |q̈| ≤ A.

• Provide the analytic expression of the minimum feasible motion time T ∗ when ∆q = qb− qa > 0
and the initial and final velocities are arbitrary in sign and magnitude (but both satisfy the
velocity bound, i.e., |q̇a| ≤ V and |q̇b| ≤ V ).

• Using the data qa = −90◦, qb = 30◦, q̇a = 45◦/s, q̇b = −45◦/s, V = 90◦/s, A = 200◦/s2,
determine the numerical value of the minimum feasible motion time T ∗ and draw the velocity
and acceleration profiles of the joint motion.

[180 minutes, open books but no computer or smartphone]
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Solution
April 11, 2017

Exercise 1

From the direct kinematics, using Tab. 1, we obtain for the position of the origin of the end-effector
frame

pH =

(
p

1

)
= 0A1(q1)

(
1A2(q2)

(
2A3(q3)

(
0

1

)))

⇒ p =

 (L2 cos q2 + L3 cos(q2 + q3)) cos q1
(L2 cos q2 + L3 cos(q2 + q3)) sin q1
L1 + L2 sin q2 + L3 sin(q2 + q3)

 . (1)

The analytic inversion of eq. (1) for p = pd =
(
pdx pdy pdz

)T proceeds as follows. After moving
L1 to the left-hand side of the third equation, squaring and adding the three equations yields the
numeric value c3 (for cos q3)

c3 =
p2

dx + p2
dy + (pdz − L1)2 − L2

2 − L2
3

2L2L3
. (2)

The desired end-effector position will belong to the robot workspace if and only if c3 ∈ [−1, 1].
Note that this condition holds no matter if L2 and L3 are equal or different. Under such premises,
we compute

s3 =
√

1− c23 (3)

and
q
{+}
3 = ATAN2 {s3, c3} , q

{−}
3 = ATAN2 {−s3, c3} , (4)

yielding by definition two opposite values q{−}3 = −q{+}3 . If c3 = ±1, the robot is in a kine-
matic singularity: the forearm is either stretched or folded, in both cases on the boundary of the
workspace. In particular, when c3 = 1, q{+}3 and q{−}3 are both equal to 0; when c3 = −1, the two
solutions will be taken1 equal to π. Instead, when c3 6∈ [−1, 1], the inverse kinematics algorithm
should output a warning message (“desired position is out of workspace”) and exit.

When p2
dx + p2

dy > 0, from the first two equations in (1) we can further compute

p2
dx + p2

dy = (L2 cos q2 + L3 cos(q2 + q3))2 ⇒ cos q1 =
pdx

±
√
p2

dx + p2
dy

, sin q1 =
pdy

±
√
p2

dx + p2
dy

,

and thus
q
{+}
1 = ATAN2 {pdy, pdx} , q

{−}
1 = ATAN2 {−pdy,−pdx} . (5)

These two values belong to (−π, π] and will always differ by π. Instead, when pdx = pdy = 0,
the first joint angle q1 remains undefined and the robot will be in a kinematic singularity (with
the end-effector placed along the axis of joint 1). The solution algorithm should output a warning
message (“singular case: angle q1 is undefined”), possibly set a flag (sing1 = ON), but continue.

1Remember that we use as conventional range q ∈ (−π, π], for all angles q. Thus, if the output of a generic
computation is −π, we always replace it with +π.
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At this stage, we can rewrite a suitable combination of the first two equations in (1) as well as the
third equation in the following way:

cos q1pdx + sin q1pdy = L2 cos q2 + L3 cos(q2 + q3) = (L2 + L3 cos q3) cos q2 − L3 sin q3 sin q2

and
pdz − L1 = L2 sin q2 + L3 sin(q2 + q3) = L3 sin q3 cos q2 + (L2 + L3 cos q3) sin q2.

Plugging the (multiple) values found so far for q1 and q3, we obtain four similar 2×2 linear systems
in the trigonometric unknowns c2 = cos q2 and s2 = sin q2:(
L2 + L3c3 −L3s

{+,−}
3

L3s
{+,−}
3 L2 + L3c3

)(
c2

s2

)
=

(
cos q{+,−}

1 pdx + sin q{+,−}
1 pdy

pdz − L1

)
⇐⇒ A{+,−}x = b{+,−}.

(6)
In (6), we should use (2) and the values from (4) and (5). This gives rise to four possible combi-
nations for the matrix/vector pair

(
A{+,−}, b{+,−}), which will eventually lead to four solutions

for q2 that are in general distinct2. These will be labeled as

q
{f,u}
2 q

{f,d}
2 q

{b,u}
2 q

{b,d}
2 ⇒ q{f,u} q{f,d} q{b,u} q{b,d}

depending on whether the robot is facing (f) of backing (b) the desired position quadrant —due to
the choice of q1, and on whether the elbow is up (u) or down (d) —due to the combined choice of
q1 and q3. If the (common) determinant of the coefficient matrix is different from zero, i.e., using
eq. (2),

det A{+,−} = (L2 + L3c3)2 + L2
3

(
s
{+,−}
3

)2

= L2
2 + L2

3 + 2L2L3c3 = p2
dx + p2

dy + (pdz − L1)2 > 0,

the solution for q2 of each of the above four cases is uniquely determined from(
c
{{f,b},{u,d}}
2

s
{{f,b},{u,d}}
2

)
=

 (L2 + L3c3)
(

cos q{+,−}
1 pdx + sin q{+,−}

1 pdy

)
+ L3s

{+,−}
3 (pdz − L1)

(L2 + L3c3) (pdz − L1)− L3s
{+,−}
3

(
cos q{+,−}

1 pdx + sin q{+,−}
1 pdy

)  ,

and henceforth
q
{{f,b},{u,d}}
2 = ATAN2

{
s
{{f,b},{u,d}}
2 , c

{{f,b},{u,d}}
2

}
. (7)

Instead, when pdx = pdy = 0 and pdy = L1, the robot will be in a double kinematic singularity,
with the arm folded and the end-effector placed along the axis of joint 1. Note that this situation
can only occur in case the robot has L2 = L3 (otherwise the singular Cartesian point would be
out of the robot workspace). The solution algorithm should output a warning message (“singular
case: angle q2 is undefined”), possibly set a second flag (sing2 = ON), and then exit. In this case,
only a single value q3 = π for the third joint angle will be defined.

Moving next to the requested numerical case with L1 = 1, L2 = 1.5, and L3 = 1.5 [m], and for the
desired position

pd =

 −1
1

1.5

 [m],

2A special case arises when the joint angle q1 remains undefined (a singularity with flag sing1 = ON). The first
component of the known vector b in (6) will vanish (pdx = pdy = 0) and only two solutions would be left for q2.
The case in which these two well-defined solutions collapse into a single value is left to the reader’s analysis.
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we can see that pd belongs to the robot workspace and that this is not a singular case since

c3 = −0.5 ∈ [−1, 1], p2
dx + p2

dy = 2 > 0.

We note that the desired position is in the second quadrant (x < 0, y > 0). Thus, the four inverse
kinematics solutions obtained from (4), (5) and (7) are:

q{f,u} =

 2.3562
1.3870
−2.0944

 =

 3π/4
1.3870
−2π/3

 [rad] =

 135.00◦

79.47◦

−120.00◦



q{f,d} =

 2.3562
−0.7074

2.0944

 =

 3π/4
2.3562

2π/3

 [rad] =

 135.00◦

−40.53◦

120.00◦



q{b,u} =

 −0.7854
1.7546
2.0944

 =

 −π/4
1.7546

2π/3

 [rad] =

 −45.00◦

100.53◦

120.00◦



q{b,d} =

 −0.7854
−2.4342
−2.0944

 =

 −π/4
−2.4342
−2π/3

 [rad] =

 −45.00◦

−139.47◦

−120.00◦

 .

(8)

As a double-check of correctness, it is always highly recommended to evaluate the direct kinematics
with the obtained solutions (8). In return, one should get every time the desired position pd.

Exercise 2

This exercise is a generalization of the minimum-time trajectory planning problem for a single
joint under velocity and acceleration bounds, with zero initial and final velocity (rest-to-rest) as
boundary conditions.

It is useful to recap first the solution to the rest-to-rest problem. The minimum-time motion is
given by a trapezoidal velocity profile (or a bang-coast-bang profile in acceleration), with minimum
motion time T ∗ and symmetric initial and final acceleration/deceleration phases of duration Ts

given by

T ∗ =
|∆q|
V

+
V

A
> 2Ts, Ts =

V

A
> 0. (9)

This solution is only valid when the distance |∆q| to travel (in absolute value) and the limit velocity
and acceleration values V > 0 and A > 0 satisfy the inequality

|∆q| ≥ V 2

A
, (10)

namely, when the distance is “sufficiently long” with respect to the ratio of the squared velocity
limit to the acceleration limit. When the equality holds in (10), the maximum velocity V is reached
only at the single instant T ∗/2 = Ts, when half of the motion has been completed. Instead, when
(10) is violated, the minimum-time motion is given by a bang-bang acceleration profile (i.e., with
a triangular velocity profile) having only the acceleration/deceleration phases, each of duration

Ts =

√
|∆q|
A

⇒ T ∗ = 2Ts. (11)
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The crusing phase with maximum velocity V is not reached in this case. For all the above cases,
when ∆q < 0 the optimal velocity and acceleration profiles are simply changed of sign (flipped
over the time axis).
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Figure 1: Qualitative asymmetric velocity profiles of the trapezoidal type for the four combinations
of signs of the initial and final velocity q̇a and q̇b. It is assumed that ∆q > 0, and that this distance
is sufficiently long so as to have a non-vanishing cruising interval at maximum velocity q̇ = V .

Consider now the problem of moving in minimum time the joint by a distance ∆q = qb − qa > 0,
but with generic non-zero boundary conditions q̇(0) = q̇a and q̇(T ) = q̇b on the initial and final
velocity. The requirement that |q̇a| ≤ V and |q̇b| ≤ V is obviously mandatory in order to have a
feasible solution. With reference to the qualitative trapezoidal velocity profiles sketched in Fig. 1,
we see that non-zero initial and final velocities may help in reducing the motion time or work
against it. In particular, when both q̇a and q̇b are positive (case (a)) it is clear that less time will
be needed to ramp up from q̇a > 0 to V , rather than from 0 to V . The same is true for slowing
down from V to q̇b > 0, rather than down to 0. On the contrary, when both q̇a and q̇b are negative
(case (d)), an extra time will be spent for reversing motion from q̇a < 0 to 0 (in this time interval,
the joint will continue to move in the opposite direction to the desired one, until it stops), when
finally a positive velocity can be achieved, and, similarly, another extra time will be spent toward
the end of the trajectory for bringing the velocity from 0 to q̇b < 0 (also in this second interval,
the joint will move in the opposite direction to the desired one). Cases (b) and (c) in Fig. 1 are
intermediate situations between (a) and (d), and can be analyzed in a similar way.
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As a result:

• in general, the acceleration/deceleration phases will have different durations Ta ≥ 0 and
Td ≥ 0 (rather than the single Ts ≥ 0 of the rest-to-rest case);

• the original required distance to travel ∆q > 0 will become in practice longer, since we need
to counterbalance the negative displacements introduced during those intervals where the
velocity is negative;

• since we need to minimize the total motion time, intervals with negative velocity should be
traversed in the least possible time, thus with maximum (positive or negative) acceleration
q̈ = ±A.

With the above general considerations in mind, we perform now quantitative calculations. In the
(positive) acceleration and (negative) deceleration phases, we have

Ta =
V − q̇a
A

, Td =
V − q̇b
A

. (12)

We note that both these time intervals will be shorter than Ts = V/A for a positive boundary
velocity and longer than Ts for a negative one. The area (with sign) underlying the velocity profile
should provide, over the total motion time T > 0, the required distance ∆q > 0. We compute this
area as the sum of three contributions, using the trapezoidal rule for the two intervals where the
velocity is changing linearly over time:

Ta ·
q̇a + V

2
+ (T − Ta − Td) · V + Td ·

V + q̇b
2

= ∆q. (13)

Substituting (12) in (13) and rearranging terms gives

(V + q̇a)(V − q̇a)
2A

+
(
T − 2V

A
+
q̇a + q̇b
A

)
· V +

(V + q̇b)(V − q̇b)
2A

= ∆q. (14)

Solving for the motion time T , we obtain finally the optimal value

T ∗ =
∆q
V

+
(V − q̇a)2 + (V − q̇b)2

2AV
. (15)

This is the generalization (for ∆q > 0) of the minimum motion time formula (9) of the rest-to-rest
case (which we recover by setting q̇a = q̇b = 0). This solution is only valid when the distance to
travel ∆q > 0, the velocity and acceleration limit values V > 0 and A > 0, and the boundary
velocities q̇a and q̇b satisfy the inequality

∆q ≥
2V 2 −

(
q̇2a + q̇2b

)
2A

(≥ 0), (16)

which is again the generalization of condition (10). This inequality is obtained by imposing that
the sum of the first and third term in the left-hand side of (14), i.e, the space traveled during
the acceleration and deceleration phases, does not exceed ∆q (a cruising phase at maximum speed
V > 0 would no longer be necessary).

It is interesting to note that, for a given triple ∆q, V , and A, the inequality (16) would be easier
to enforce as soon as q̇a 6= 0 and/or q̇b 6= 0, independently from their signs. The physical reason,
however, is slightly different for a positive or negative boundary velocity, say of q̇a. When q̇a > 0,
less time is needed in order to reach the maximum velocity V > 0; thus, it is more likely that
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the same problem data will imply a cruising velocity phase. Instead, when q̇a < 0, a negative
displacement will occur in the initial phase, which needs to be recovered; thus, it is more likely
that a cruising phase at maximum velocity V will be needed later.

Finally, we point out that:

• when inequality (16) is violated, or for special values of q̇a or q̇b (e.g., q̇a = V ), a number of
sub-cases arise; their complete analysis is out of the present scope and is left as an exercise
for the reader;

• for ∆q < 0, it is easy to show that the formulas corresponding to (12), (15), and (16) are

Ta =
V + q̇a
A

, Td =
V + q̇b
A

, T ∗ =
|∆q|
V

+
(V + q̇a)2 + (V + q̇b)2

2AV
,

|∆q| ≥
2V 2 −

(
q̇2a + q̇2b

)
2A

.

Indeed, the velocity profiles in Fig. 1 will use the value −V as cruising velocity.
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Figure 2: Time-optimal velocity and acceleration profiles for the numerical problem in Exercise 2.

Moving to the given numerical problem, from ∆q = qb−qa = 30◦− (−90◦) = 120◦ > 0, q̇a = 45◦/s,
q̇b = −45◦/s, V = 90◦/s, and A = 200◦/s2, we evaluate first the inequality (16) and verify that

120 >
2 · 902 −

(
452 + (−45)2

)
2 · 200

= 30.375,

so that the general formula (15) applies. This yields

T ∗ = 1.8958 [s],

while from (12) we obtain
Ta = 0.225 [s], Td = 0.675 [s],

with an interval of duration Tcruise = T ∗ − Ta − Td = 0.9958 [s] in which the joint is cruising at
V = 90◦/s. The associated time-optimal velocity and acceleration profiles are reported in Fig. 2.

∗ ∗ ∗ ∗ ∗

7


