Robotics I

July 15, 2014
For a KUKA LWR robot, let $\boldsymbol{\theta} \in \mathbb{R}^{7}$ be the joint variables and consider a situation in which the last three joints (constituting a spherical wrist with center $W=O_{5}=O_{6}$) are permanently frozen. For kinematic analysis, use the DH frame assignment of Fig. 1, where the robot is shown in its configuration $\boldsymbol{\theta}=\mathbf{0}$. Assume $l_{1}=l_{2}=l_{3}=l_{4}=l_{5}=l$ (while l_{0} and l_{6} are different). Frame 7 is drawn for clarity in a displaced position, but is actually located on the final flange of the robot at a distance l_{6} from W.

Figure 1: A DH frame assignment for the KUKA LWR robot

- Provide the expression $\boldsymbol{p}_{W}=\boldsymbol{f}(\boldsymbol{\theta})$ for the position of the robot wrist center W.
- Determine the expression of the 3×4 Jacobian matrix $\boldsymbol{J}(\boldsymbol{\theta})$ relating the velocity of the active joints $\dot{\boldsymbol{\theta}}_{a} \in \mathbb{R}^{4}$ to the velocity $\boldsymbol{v}_{W}=\dot{\boldsymbol{p}}_{W}$.
- Having set $\theta_{3}=0$, find suitable numerical values for the remaining variables in $\boldsymbol{\theta}_{a}$ so that point W is on the axis \boldsymbol{z}_{0} at a generic distance d from the origin O_{1} of frame 1. The distance d can be chosen arbitrarily, as long as it satisfies $0<d<4 l$. In the selected configuration, show that the Jacobian \boldsymbol{J} has full rank and give a basis for its null space $\mathcal{N}\{\boldsymbol{J}\}$.
- In the same configuration, show that if also joint 3 is considered to be frozen, then the resulting square Jacobian $\boldsymbol{J}_{/ 3}$ would be singular. Determine then all independent Cartesian directions \boldsymbol{w} that are not instantaneously accessible by the point W (i.e., $\boldsymbol{w} \notin \mathcal{R}\left\{\boldsymbol{J}_{/ 3}\right\}$).
[180 minutes; open books]

