
Robotics I
January 9, 2013

Exercise 1
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Figure 1: Definition of the three angles α, β, and γ

Consider the orientation obtained through the sequence of three rotations specified by the angles
α, β, and γ in Fig. 1. Pay attention to the definition of positive rotations —the figure shows a
situation in which α and β have some positive values in (0, π/2).

a) Determine the associated rotation matrix R(α, β, γ) (direct problem).

b) When the orientation is expressed by a rotation matrix R, find the closed-form expressions
for the minimal representation of orientation using the above set of angles α, β, and γ (inverse
problem). Characterize the cases when two solutions or an infinite number of solutions exist.

c) Obtain the mapping between the time derivatives of the three angles in this minimal repre-
sentation and the angular velocity vector, i.e.,

ω = T (α, β)

 α̇

β̇
γ̇

 ,

and find the singularities of the matrix T . In one of these singularities, provide two numerical
examples in which a desired ω can or, respectively, cannot be realized.

Exercise 2
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Figure 2: A planar 4R robot arm with unitary link lengths

A 4R planar robot with links of unitary length is shown in Fig. 2.
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a) Provide the Jacobian matrix J(θ) relating the joint velocity θ̇ =
(
θ̇1 θ̇2 θ̇3 θ̇4

)T ∈ R4

to the linear velocity v =
(
vx vy

)T ∈ R2 of the robot end-effector.

b) Find all singular configurations of this Jacobian.

c) In the configuration θ =
(

0 0 −π/4 π/2
)T , determine the joint velocity θ̇ of minimum

norm that realizes the desired end-effector velocity v =
(

1 0
)T .

Exercise 3

Figure 3: An anthropomorphic 3R robot arm

The 3R anthropomorphic robot in Fig. 3 is equipped with encoders at the joints for position
sensing. Suppose that a small error ∆θ1 affects the position measurement of the encoder at the
first joint. What is the maximum norm of the error ∆p over the whole workspace when estimating
the end-effector position p using the encoder readings? Provide a complete explanation of your
answer.

[180 minutes; open books]
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Solutions
January 9, 2013

Exercise 1

The first rotation is around axis Z = Z0 (by an angle α), and the following ones are around the
moving axes Y ′ = −Y1 (by β) and X ′′ = X2 (by γ). The only caution is in the definition of
the second angle β, which is positive counterclockwise around −Y1. Thus, the associated rotation
matrices are

R1(α) =

 cosα − sinα 0
sinα cosα 0

0 0 1


R2(β) =

 cosβ 0 − sinβ
0 1 0

sinβ 0 cosβ

 (note the opposite signs of the sin terms)

R3(γ) =

 1 0 0
0 cos γ − sin γ
0 sin γ cos γ

 .

The rotation matrix for the direct problem is computed as

R(α, β, γ) = R1(α)R2(β)R3(γ)

=

 cosα cosβ − sinα cos γ − cosα sinβ sin γ sinα sin γ − cosα sinβ cos γ
sinα cosβ cosα cos γ − sinα sinβ sin γ − cosα sin γ − sinα sinβ cos γ

sinβ cosβ sin γ cosβ cos γ

. (1)

For the inverse problem, let R = {Rij}. From the expressions of the elements in the last row
of R(α, β, γ), one has

β = ATAN2
{
R31,±

√
R2

32 +R2
33

}
. (2)

When R2
32 + R2

33 6= 0 (or, cos2 β 6= 0), for each of the two values of β obtained from eq. (2) we
have an associated solution

α = ATAN2
{
R21

cosβ
,
R11

cosβ

}
, γ = ATAN2

{
R32

cosβ
,
R33

cosβ

}
.

Instead, when R32 = R33 = R11 = R21 = 0 (or, cosβ = 0), it is sinβ = ±1 and thus

R(α, β, γ)|β=±π
2

=

 0 − sin(α± γ) ∓ cos(α± γ)
0 cos(α± γ) ∓ sin(α± γ)
±1 0 0

 .

Therefore, we can only determine the sum or, respectively, the difference of the two angles α and
γ, leading to an infinite number of inverse solutions. If R33 = 1, we have

β =
π

2
, α+ γ = ATAN2 {−R12, R22} .

If R33 = −1, we have
β = −π

2
, α− γ = ATAN2 {−R12, R22} .
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Finally, the contributions of the time derivatives α̇, β̇, and γ̇ to ω are computed by evaluating
the directions of the rotation axes Z0, −Y1 and X2 in the original reference frame1:

ω = ωα̇ + ωβ̇ + ωγ̇ =

 0
0
1

 α̇+

 sinα
− cosα

0

 β̇ +

 cosα cosβ
sinα cosβ

sinβ

 γ̇ = T (α, β)

 α̇

β̇
γ̇

 .

We have a singularity when detT (α, β) = cosβ = 0, or β = ±π/2. For instance, when β = π/2,
the angular velocity

ω =

 0
0
1

 ∈ R{T (α, π/2)}

can be realized in infinite ways by choosing

β̇ = 0, α̇+ γ̇ = 1.

On the other hand, the angular velocity ω =
(

cosα sinα 0
)T will certainly not belong to

the range of T at the current α, and therefore cannot be realized by any choice of
(
α̇ β̇ γ̇

)T
—such situations are always present when using any minimal representation for the orientation.

Exercise 2

The position p of the robot end-effector is

p =

(
cos θ1 + cos(θ1 + θ2) + cos(θ1 + θ2 + θ3) + cos(θ1 + θ2 + θ3 + θ4)

sin θ1 + sin(θ1 + θ2) + sin(θ1 + θ2 + θ3) + sin(θ1 + θ2 + θ3 + θ4)

)
= f(θ).

Therefore, its velocity v is obtained as

v = ṗ =
∂f

∂θ
θ̇ = J(θ) θ̇,

where the Jacobian matrix is

J(θ) =

(
−(s1 + s12 + s123 + s1234) −(s12 + s123 + s1234) −(s123 + s1234) −s1234
c1 + c12 + c123 + c1234 c12 + c123 + c1234 c123 + c1234 c1234

)
and we used the compact notation cijk = cos(θi + θj + θk) and similar.

Note that this matrix can be conveniently rewritten as

J(θ) =

(
−s1 −s12 −s123 −s1234
c1 c12 c123 c1234

)
1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

 = J ′(θ)T .

Being T nonsingular, the analysis of the rank deficiencies of J can be performed on the simplified
matrix J ′. We have a singularity at every configuration where the six (2× 2) minors of J ′ vanish
simultaneously. It is easy to see that this occurs if and only if

sin θ2 = sin θ3 = sin θ4 = 0,

1The axis −Y1 is obtained as R1(α) ·
`

0 −1 0
´T

; the axis X2 is obtained as R1(α)R2(β) ·
`

1 0 0
´T

. An

alternative (but longer) procedure would be to extract ω from the relation S(ω) = Ṙ RT , with R = R(α, β, γ)
given by eq. (1).
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namely when all the links are folded or stretched along a common radial line originating at the
robot base.

The configuration θ =
(

0 0 −π/4 π/2
)T is a regular one, and thus any Cartesian velocity

v of the end-effector can be realized (by∞2 different joint velocity vectors θ̇). The minimum norm
solution is found when using the pseudoinverse of J , namely

θ̇
∗

= J#(θ)v = JT (θ)
(
J(θ)JT (θ)

)−1

v

=

(
0 0 0 −0.7071

3.4142 2.4142 1.4142 0.7071

)#(
1
0

)
=


0.1752
0.1239
0.0726
−1.4142

 [rad/s],

with
∥∥θ̇∗∥∥ = 0.2265.

Exercise 3

The presence of a small measurement error at joint 1 affects the computation of the nominal
position of the robot end-effector through the direct kinematics. This error can be seen as a
displacement of the end-effector position resulting from a small angular variation of the joint. As
such, the Cartesian error for sufficiently small variations can be estimated by using differential
arguments, i.e., through the robot Jacobian. In the considered case, we only need to evaluate the
first column of the geometric Jacobian related to the linear velocity, i.e.,

∆p =

 ∆px
∆py
∆pz

 = JL1(q) ∆θ1 =

 z0 × p0,e

 ∆θ1.

Computations are simplified when expressing all vectors in the Denavit-Hartenberg frame RF1

that has the x1 and y1 axes in the plane of motion of links 2 and 3. Moreover, what really matters
is the distance of the end-effector from the axis z0 of joint 1 (i.e., the component of p0,e along the
x1 direction). Therefore

‖∆p‖ =
∥∥1∆p

∥∥ =
∥∥1z0 × 1p0,e

∥∥ · |∆θ1| =
∥∥∥∥∥∥
 0

1
0

×
 a2 cos θ2 + a3 cos(θ2 + θ3)

∗
0

∥∥∥∥∥∥ · |∆θ1| ,
where a2 and a3 are DH parameters (the length of links 2 and 3) and ∗ denotes an irrelevant
quantity. As a result, the maximum norm of the position error over the whole workspace is

max ‖∆p‖ = max
(θ2,θ3)

|a2 cos θ2 + a3 cos(θ2 + θ3)| · |∆θ1| = (a2 + a3) · |∆θ1| .

As intuition suggests, the maximum error is obtained when the robot is stretched horizontally,
with its end-effector at the limit of the robot workspace.

∗ ∗ ∗ ∗ ∗
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