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Exercise 1

The time derivative of a rotation matrix can be given the following two alternative expressions:

Ṙ = RS(Ω), Ṙ = S(ω)R.

Prove the correctness of both expressions and give the physical interpretation of ω and Ω.

Exercise 2
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Figure 1: Planar RPR robot

For the planar RPR robot shown in Fig. 1, derive the 2×3 Jacobian matrix J(q) relating the joint
velocity q̇ ∈ R3 to the Cartesian velocity ṗ ∈ R2 of the end effector, and find all its singularities.
Keeping q1 as arbitrary, choose a singular configuration of this robot and denote the Jacobian in
this configuration as J̄ = J̄(q1). For each of the following linear subspaces,

R
(
J̄
)

N
(
J̄
)

R
(
J̄

T
)

N
(
J̄

T
)
,

provide the symbolic expression of a unitary basis (i.e., a set of linearly independent unit vectors
spanning the whole subspace).

Exercise 3
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Figure 2: A planar 2R robot with the second link at q2 = π/2

Consider a planar 2R robot, with links of length `1 = 1 and `2 = 0.5 [m], in the configuration
shown in Fig. 2. The two motors at the joints are equipped with incremental encoders, respectively
providing r1 and r2 pulses/turn. The gear ratios of the transmission/reduction systems of the two
motors are N1 = 100 and N2 = 80. Determine the minimum resolutions of the two encoders so that
they can be used to sense a displacement at the robot end-effector level as small as ∆p = 10−4 [m],
alternatively in one of two arbitrary orthogonal directions.

[150 minutes; open books]
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Solution
June 11, 2012

Exercise 1

As presented in the lecture slides, we consider first the identity RRT = I. Taking the time
derivative:

d

dt

(
RRT

)
= ṘRT +RṘ

T
=
(
ṘRT

)
+
(
ṘRT

)T

= O.

Therefore, the matrix ṘRT is skew symmetric. We can write

ṘRT = S(ω) ⇒ Ṙ = S(ω)R,

where the angular velocity ω is expressed in the base (unrotated) frame.

Similarly, consider the identity RTR = I. Taking the time derivative:

d

dt

(
RTR

)
= Ṙ

T
R+RT Ṙ =

(
RT Ṙ

)
+
(
RT Ṙ

)T

= O.

Therefore, the matrix RT Ṙ is skew symmetric. We can write

RT Ṙ = S(Ω) ⇒ Ṙ = RS(Ω),

where the angular velocity Ω is now expressed in the body (rotated) frame.

From this interpretation, it also follows that

ω = RΩ,

and so
Ṙ = S(ω)R = S(RΩ)R = RS(Ω).

This implies that (see Exercise 3.1 in the textbook)

S(RΩ) = RS(Ω)RT .

Conversely,
S(RTω) = RTS(ω)R.

Exercise 2

The direct kinematics of the considered RPR planar robot is

p = f(q) =
(
q2c1 + Lc13
q2s1 + Ls13

)
.

Therefore, the Jacobian of interest is

J(q) =
∂f(q)
∂q

=
(
− (q2s1 + Ls13) c1 −Ls13
q2c1 + Lc13 s1 Lc13

)
=
(
J1 J2 J3

)
.
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To check the singularities (i.e., where rankJ < 2), we consider the three 2× 2 minors:

det
(
J1 J2

)
= (q2 + Lc3), det

(
J1 J3

)
= Lq2s3, det

(
J2 J3

)
= Lc3.

They are simultaneously zero iff {q2 = 0 .AND. c3 = 0}. Let then q1 be arbitrary, q2 = 0, and
choose for instance q3 = +π/2. In this configuration,

J̄ = J̄(q1) =
(
−Lc1 c1 −Lc1
−Ls1 s1 −Ls1

)
Unitary bases for the range and null spaces of interest are provided as follows:

R
(
J̄
)

= span
{(

c1
s1

)}
N
(
J̄

T
)

= span
{(

s1
−c1

)}
,

R
(
J̄

T
)

= span

 1√
1 + 2L2

 L
−1
L

 N
(
J̄
)

= span

 1√
2

 1
0
−1

 ,
1√

1 + L2

 1
L
0

 .

Exercise 3

Denote by ∆θ the vector of motor position variations (the increments measured by the encoders
at the motor sides), by ∆q the associated vector of link position variations, by ∆p the resulting
vector of end-effector position variations, and by N the diagonal matrix of reduction ratios

N =
(
N1 0
0 N2

)
=
(

100 0
0 80

)
.

We have
∆p = J(q)∆q = J(q)N−1∆θ, (1)

with the Jacobian of the 2R planar robot given by

J(q) =
(
− (`1s1 + `2s12) −`2s12
`1c1 + `2c12 `2c12

)
.

To eliminate the appearance of q1, it is convenient to work in the rotated frame 1 attached to the
first link. Since we are working in the plane (x,y), it is

1J(q) = RT
1 (q1)J(q) =

(
c1 s1
−s1 c1

)
J(q) =

(
−`2s2 −`2s2
`1 + `2c2 `2c2

)
.

Therefore, we replace eq. (1) by
1∆p = 1J(q)N−1∆θ. (2)

At the given configuration q2 = π/2,

1JN−1 =
(
−`2/N1 −`2/N2

`1/N1 0

)
.

The end-effector displacement ∆p that is requested to be sensed in either of two orthogonal direc-
tions can be defined using again the coordinate axes of frame 1. Let

1∆pI =
(

∆p
0

)
, 1∆pII =

(
0

∆p

)
.
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In case I, we solve from eq. (2)

∆θI = N · 1J−1 · 1∆pI =

(
0

−N2∆p/`2

)
.

Plugging the data `2 = 0.5, N2 = 80, and ∆p = 10−4, we obtain the minimum increment that
should be sensed by the encoder at motor 2 in case I:

|∆θ2,I | = 16 · 10−3 [rad].

Since the resolution of this encoder is |∆θ2| = 2π/r2, the minimum number of pulses/turn needed
is

r2 =
π

8
· 103 ' 392.7.

Being the number r of pulses/turn typically a power of 2, an incremental encoder with 512 = 29

pulses/turn would be sufficient for joint 2 in this case.

Similarly, in case II

∆θII = N · 1J−1 · 1∆pII =

(
N1∆p/`1
−N2∆p/`1

)
.

Plugging the data `1 = 1, N1 = 100, N2 = 80, and ∆p = 10−4, we obtain the minimum increments
that should be sensed by the two encoders in case II:

|∆θ1,II | = 10−2 [rad], |∆θ2,II | = 8 · 10−3 [rad].

Note that the obtained condition on the second encoder will be more stringent in case II than in
case I. From |∆θ1| = 2π/r1 and |∆θ2| = 2π/r2, the minimum resolutions for the two encoders will
be

r1 = 2π · 102 ' 614, r2 =
π

4
· 103 ' 785.4.

Being the number of pulses/turn typically a power of 2, two equal incremental encoders with
1024 = 210 pulses/turn mounted at the motor sides of the two robot joints would be sufficient to
satisfy the requested end-effector sensing accuracy.

∗ ∗ ∗ ∗ ∗
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