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June 11, 2012

Exercise 1

The time derivative of a rotation matrix can be given the following two alternative expressions:
R=RS(Q), R=S(w)R.

Prove the correctness of both expressions and give the physical interpretation of w and 2.

Exercise 2

Figure 1: Planar RPR robot

For the planar RPR robot shown in Fig. 1, derive the 2 x 3 Jacobian matrix J(q) relating the joint
velocity ¢ € R? to the Cartesian velocity p € R? of the end effector, and find all its singularities.
Keeping ¢; as arbitrary, choose a singular configuration of this robot and denote the Jacobian in
this configuration as J = J(q1). For each of the following linear subspaces,

R(I) NI rR(IT) N(I),

provide the symbolic expression of a unitary basis (i.e., a set of linearly independent unit vectors
spanning the whole subspace).

Exercise 3

Figure 2: A planar 2R robot with the second link at g = 7/2

Consider a planar 2R robot, with links of length ¢; = 1 and ¢, = 0.5 [m], in the configuration
shown in Fig. 2. The two motors at the joints are equipped with incremental encoders, respectively
providing r; and ro pulses/turn. The gear ratios of the transmission/reduction systems of the two
motors are Ny = 100 and Ny = 80. Determine the minimum resolutions of the two encoders so that
they can be used to sense a displacement at the robot end-effector level as small as Ap = 10~% [m],
alternatively in one of two arbitrary orthogonal directions.
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Exercise 1

As presented in the lecture slides, we consider first the identity RR? = I. Taking the time

derivative: -
% (RRT) — RR” + RR' = (RRT> + (RRT> = 0.

Therefore, the matrix RR” is skew symmetric. We can write
RR" = S(w) = R=S(w)R,
where the angular velocity w is expressed in the base (unrotated) frame.
Similarly, consider the identity R R = I. Taking the time derivative:

d . . . AT
= (R"R)=R'R+R"R~ (R'R)+ (R"R) -o0.
Therefore, the matrix RT R is skew symmetric. We can write
RTR=5(Q) = R=RS(Q),
where the angular velocity €2 is now expressed in the body (rotated) frame.
From this interpretation, it also follows that

w = RQ,

and so

R=S(w)R=S(RQR=RS(N).
This implies that (see Exercise 3.1 in the textbook)
S(RQ) = RS(Q)R".
Conversely,
S(RTw) = R"S(w)R.
Exercise 2

The direct kinematics of the considered RPR planar robot is

_ _( gec1 + Leys
p=fla) ( q281 + Lsi3 ) '

Therefore, the Jacobian of interest is

o of(q) o —(q281 + Ls13) ¢ —Lsis _
J(q) o Tq o qa2C1 + L013 S1 L013 B ( Jl J2 J3 ) :



To check the singularities (i.e., where rank J < 2), we consider the three 2 x 2 minors:
det(J1 J2 ):(QQ—FLCg), det(J1 Jd ):LQQS?,, det(JQ J3 )ZLCg.

They are simultaneously zero iff {g = 0 .AND. ¢5 = 0}. Let then ¢; be arbitrary, ¢ = 0, and
choose for instance g3 = 4+ /2. In this configuration,

T _ 7 o —LCl C1 —LC1
J= J(ql) - ( —LS1 S1 —LSl >

Unitary bases for the range and null spaces of interest are provided as follows:

R (J) :Span{< N )} W (37) =Span{( o )}

L 1 1
! N(j) = span i 0 #

R(jT>:span —_— -1 L
vi+2r? | ZR T RRVAIY R W

Exercise 3

Denote by A@ the vector of motor position variations (the increments measured by the encoders
at the motor sides), by Agq the associated vector of link position variations, by Ap the resulting
vector of end-effector position variations, and by IN the diagonal matrix of reduction ratios

(N 0\ _ (100 0
N=(B )= @)

Ap = J(q)Ag = J(g)N A8, (1)
with the Jacobian of the 2R planar robot given by

— (l151 4+ las12) —Las1a > .

We have

licr + locia lacio

s = (

To eliminate the appearance of ¢, it is convenient to work in the rotated frame 1 attached to the
first link. Since we are working in the plane (x,y), it is

@ =Rlar@ = 9 ) a@= (T )

—51 ¢ lyco

Therefore, we replace eq. (1) by
"Ap =1J(q)N~'A8. (2)

At the given configuration gy = 7/2,

1 —1_ ([ —42/N1w —{3/Ny
JN —< 0Ny 0 :

The end-effector displacement Ap that is requested to be sensed in either of two orthogonal direc-
tions can be defined using again the coordinate axes of frame 1. Let

A 0
1AP1( Op), IAPU(AP)-



In case I, we solve from eq. (2)

A =N -'J L Ap, = 0 .
! —NoAp/ly
Plugging the data ¢, = 0.5, No = 80, and Ap = 10~%, we obtain the minimum increment that
should be sensed by the encoder at motor 2 in case I

|Afy 1| = 16 - 1073 [rad].

Since the resolution of this encoder is |Afy| = 27 /79, the minimum number of pulses/turn needed
is
™

r=g- 103 ~ 392.7.

Being the number r of pulses/turn typically a power of 2, an incremental encoder with 512 = 2°
pulses/turn would be sufficient for joint 2 in this case.

Similarly, in case IT

NiAp/et
AHH:N-lJ_l-lApH:< 1Ap/6 )

—NyAp/ty

Plugging the data ¢; = 1, N; = 100, N, = 80, and Ap = 10~%, we obtain the minimum increments
that should be sensed by the two encoders in case II:

|AG 7] = 1072 [rad], |AGs 7] = 8- 1073 [rad].

Note that the obtained condition on the second encoder will be more stringent in case II than in
case I. From |Af;| = 27 /ry and |Af3| = 27 /13, the minimum resolutions for the two encoders will
be

r = 2m-10? ~ 614, Ty = % 103 ~ 785.4.

Being the number of pulses/turn typically a power of 2, two equal incremental encoders with
1024 = 219 pulses/turn mounted at the motor sides of the two robot joints would be sufficient to
satisfy the requested end-effector sensing accuracy.
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