Robotics 1
April 26, 2012

Exercise 1

Consider the 3R robot in Fig. 1, with the associated Denavit-Hartenberg parameters of Tab. 1.
An extra frame is shown on the robot end-effector, representing the typical frame associated to an
eye-in-hand camera.

Figure 1: A 3R robot
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Table 1: Table of DH parameters

e Draw on the figure the Denavit-Hartenberg frames specified by Tab. 1.

e Derive the explicit expression of the 3 x 3 Jacobian ¢J(q) relating the joint velocity ¢ to the
linear velocity ‘v of the origin of the camera frame expressed in the camera frame as

‘v="J(q)q

Exercise 2

Let two absolute orientations R, (initial) and Ry (final) be assigned through their minimal
representation with the (Z, X,Y") Euler angles:

™ ™ T T
(oc B9)=(5 3 0) (o Bra)=(—5 0 3)
o Design a rest-to-rest orientation trajectory that joins °R; to ORf in time T' = 1.5 s using the

azxis-angle method and a cubic polynomial as timing law.

e Provide the expression of the orientation " R(t) at a generic instant ¢ € (0,7 of the planned
motion and the associated angular velocity %w(t), both expressed in the absolute reference
frame.

e What is the maximum value wyq, of the norm of the angular velocity %w(t) for t € [0,7]?

[180 minutes; open books & software]



Solution
April 26, 2012

Exercise 1

The correct frame assignment is shown in Fig. 2, where the second and third joint as well as the
second link are illustrated in transparency for better clarity.

Figure 2: The DH frames for the 3R robot

For later use, we can see that the constant rotation from the end-effector to the camera frame is
given by
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Moreover, from the DH table we can build the homogenous transformation matrices °A;(q1),
1 As(q2), and 2A3(g3) containing the rotation matrices

cosq; 0 singy cosqa —sings O cosqs —sings O
‘Ri=| sings 0 —cosqq 'Ry=| sings cosqga O Ry=| sings cosgs 0
0 1 0 0 0 1 0 0 1

that will be needed in the following.

The position p of the origin O3 of frame 3 can be computed (in homogeneous coordinates) as

( 11) ) = %A (q1)" As(q2)? As(gs) ( (1) )

yielding
cos q1 (Lo cos o + L3 cos(ga + q3))

p=f(q) = | singi(Lacosqz + Lzcos(qa + q3))
Ly + Ly singe + Lz sin(gz + ¢3)



The Jacobian related to the linear velocity “v (= %v3) of the origin of frame 3 and expressed in
the base frame is obtained as
of(q)
oy = 22

(q) o

—sing; (Lo cosqa + Lycos(qa +q3)) —cosqr(Lasings + Lysin(ga + q3)) —Lscosqr sin(gz + ¢3))

cos q1(Lg cos go + Lz cos(qa +q3))  —singi(Lasings + Lasin(gz +q3)) —Lzsing sin(ga2 + ¢3))

0 L cos g2 + L3 cos(g2 + q3) L3 cos(q2 + g3)

The requested Jacobian ¢J(q) that relates g to ‘v (= “v3) is obtained by applying suitable
rotation matrices:

“J(q) = "RI(2)°J(a) = *R] (*R(a) (" RS (@) (BT (01)°(9))))

Lo cosga + L3 cos(gz + g3) 0 0
_ 0 L3+ Lacosqs L3
0 Lo sings 0

The following is a symbolic Matlab script performing intermediate and final computations.

clear all

clc

syms L1 L2 L3 ql1 92 g3 alfa d a theta pi real

% DH parameters

alfal=pi/2; alfa2=0; alfa3=0; di=L1; d2=0; d3=0; al=0; a2=L2; a3=L3;
% DH homogeneous matrix

A=[cos(theta) -sin(theta)*cos(alfa) sin(theta)*sin(alfa) a*cos(theta);
sin(theta) cos(theta)*cos(alfa) -cos(theta)*sin(alfa) a*sin(theta);
0 sin(alfa) cos(alfa) d;

000 1];

% evaluations

Al=subs(A, {alfa,d,a,theta}, {alfal,dl,al,ql})

A2=subs(A, {alfa,d,a,theta}, {alfa2,d2,a2,q2})

A3=subs(A, {alfa,d,a,theta}, {alfa3,d3,a3,q3})

R1=A1(1:3,1:3); R2=A2(1:3,1:3); R3=A3(1:3,1:3);

% camera frame

Rc=[0 0 1; 0 1 0; -1 0 0]

% position of 03

phom=A1%(A2*%(A3+[0 0 0 1]1°));

p=simplify(phom(1:3))

% Jacobian in frame 0O

q=[ql g2 q3]’;

J=jacobian(p,q)

% Jacobian in frame 1,2,3

J1=simplify(R1’*J)

J2=simplify (R2’*J1)

J3=simplify(R3’*J2)

% final Jacobian in camera frame

Je=simplify (Rc’*J3)

% end



Exercise 2

The rotation matrix associated to the («, 3,7) angles in the (Z, X,Y") Euler representation, i.e.,
for a sequence of rotations around the axes Z, X’ (moved), and Y (moved), is obtained from the
elementary rotation matrices

cosa —sina 0 1 0 0 cosy 0 sinvy
Rz(a)=| sina cosa 0 | Rx(B)=| 0 cosf —sinf | Ry(y)= 0 1 0
0 0 1 0 sinf cospf —siny 0 cosvy
as
Rzxy(a,3,7) = Rz(a)Rx(8)Ry (v),
or
cosacosy —sinasinfGsiny —sinacosf cosasiny + sin asin 3 cosy
Rzxy(a,8,7) = | sinacosy+cosasinfsiny cosacosf sinasiny — cosasin§cosy
—cos(siny sin 3 cos 3 cosy

Thus, we can compute the rotation matrices associated to the given (o, 5;,7;)

V2o V2
2 2
°R; = Rzxv (i, Bi,vi) = Q 0 Q ,
2 2
0 -1 0
and to (ay, B¢, 7¢)

0O 1 0

°R; = Ryxv(ay,Bs,vp) = 0 0 -1
-1 0 0

The relative rotation between the initial and final orientation is thus

vz V2

03 2
R;="R/°R;=| 1 0 0
0 V2 V2

2 2

Note that this rotation matrix is defined with respect to the initial orientation °R; (or Riy = ‘R, £)-

We extract then the angle 6;; and the invariant axis = (a unit vector) from the elements R;; of
the rotation matrix R;;:

0;s = ATAN2 {\/(Rzl — Ry2)? 4 (Rs1 — Ri3)” + (Ras — Raa)”, Riy + Ry + Ras — 1} = 2.5936 [rad]

(or, in degrees, 0, = 148.6°). Being sin6,; # 0, we have

) Ry — Ra . —v2/2 —0.6786

= Ris— Ry | =——| —v2/2 | = -06786
"7 2sing, | B RY 1.042 v2/

Ro1 — Ra 1_ (\/5/2) 0.2811



Again, this vector is expressed in the frame defined by the initial orientation *R; (or r = r).

For the rest-to-rest rotation in time 7', the cubic polynomial (in normalized time 7 = t/T)

0(t) = iy (3 G)Q 7 <;>3>

is such that 6(0) = 0 and 6(T") = 0,7, and its time derivative

- ()-3))

satisfies §(0) = 6(T) = 0 as required. The maximum rotation speed is attained at t = T/2:

(T ) . .
6 (2) = 3297@7” (>0) = (for T =1.5) Opax = 0(0.75) = 2.5936 [rad/s)].

Using the obtained r, the orientation at a generic instant ¢ € [0, 7] is

R(r,0(t)) =
r2(1—cos 8(t))+cos O(t) roTy(1—cos 0(t))—r, sinO(t) ryr.(1—cosO(t))+r, sind(t)
roTy(1—cos 8(t))4r. sin 6(t) ri(l—cos 0(t))+cos O(t) ryTz(1—cos 6(t))—ry sin (t) =

rerz(1—cos0(t))—ry sin@(t) ryr.(l—cosO(t))+ry sinO(t) r2(1—cos (t))+cos 8(t)

0.5395 cos 6(t)+0.4605 0.4605(1—cos 6(£))—0.2811sin 0(t)  —0.1907(1—cos #(t))—0.6786 sin 8(t)
0.4605(1—cos 6(t))+0.2811 sin O(t) 0.5395 cos 6(t)+0.4605 —0.1907(1—cos 6(t))+0.6786 sin O(t)
—0.1907(1—cos 6(t))+0.6786 sin (t)  —0.1907(1—cos O(t))—0.6786 sin (t) 0.9210 cos 0(t)+0.07901

Indeed, this orientation is relative to the initial one °R;, or R(r,0(t)) = ‘R(‘r,0(t)). For check,
it is easy to see that at t = 0 (A(0) = 0) it is R(r,0) = I. Similarly, at t =T (6(T) = 0;y) it is
R(r,0;;) = R;;. The absolute orientation is simply obtained as

"R(r.0(t)) = "Ri'R('r,0(t)) = R("R;'r,0(t)) = R(°r,0(t)) =

0.2466 cos 0(t)—0.4798 sin 6(t)+0.4605  0.4605(1—cos 0(t))+0.2811sin(t) —0.1907—0.5164 cos 6(t))—0.4798 sin O(t)
0.5164 cos 0(t)+0.4798 sin 0(t)4+-0.1907  0.1907(1—cos 6(¢))—0.6786sin 0(t)  0.7861 cos (¢)—0.4798 sin 0()—0.07901

—0.4605(1—cos 6(t))—0.2811 sin 6(t) —0.5395 cos 6(t)—0.4605 0.1907(1—cos 6(t))—0.6786 sin 6(t)

Finally, the angular velocity associated to the planned motion expressed in the frame °R; is

} o —0.6786 .
‘wt) ="ro(t) = —0.6786 | 6(t),
0.2811
and in the absolute frame
_ o . —0.6786 .
‘w(t) ="Ri'w(t) = "Ri'r 0(t) ="rd(t) = [ —0.2811 | 6(1).
0.6786



Its maximum value in norm (invariant with respect to the frame of definition) is simply

gax ‘o] = max [fw®] = ['rl| - max 6] =1-bmas = 2.5036 [rad /.

A symbolic/numeric Matlab script supporting the computations of Exercise 2 is available.

* %k ok ok ok



