
Robotics I
June 17, 2011

Consider a 2R planar robot having link lengths `1 = 3 and `2 = 2 [m]. The joint velocities are
limited by

|q̇1| ≤ 1 rad/s, |q̇2| ≤ 1.5 rad/s.

Determine the feasible Cartesian velocity v = (vx, vy) of the end-effector which is the largest in
norm at the configuration qa = (π/6, π/3) [rad], providing also the joint velocities q̇ realizing it
and the resulting norm ‖v‖. Repeat this analysis for a second configuration qb = (π/6, 7π/8) [rad].
Draw a figure illustrating all feasible Cartesian velocities of the end-effector at least for the first
case. Also, illustrate what happens to this figure when the robot is in a singular configuration qs.

[90 minutes; open books]
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Solution
June 17, 2011

The solution is a straightforward application of linear algebra. Figure 1 shows a rectangle Rj

in the (q̇1, q̇2) space representing the region of feasible joint velocities, having the four vertices q̇A

to q̇D with both joints at their maximum (positive) or minimum (negative, symmetric) bounds.
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Figure 1: Joint velocity limits — the vertices of the rectangle Rj are labeled as A to D with
reference to the following Cartesian plots

The Jacobian of the 2R planar robot is

J(q) =

(
− (`1 sin q1 + `2 sin(q1 + q2)) −`2 sin(q1 + q2)
`1 cos q1 + `2 cos(q1 + q2) `2 cos(q1 + q2)

)
.

When evaluated at the configuration qa = (π/6, π/3), and with the given link lengths, we have the
constant matrix

Ja = J(qa) =

(
−3.5 −2

2.5981 0

)
that will generate all feasible Cartesian velocities v ∈ Pc as

v = Jaq̇, ∀q ∈ Rj .

In particular, the vertices A to D of Rj will map respectively into the homonymous vertices of the
region Pc (see Fig. 2):

vA = Ja

(
1

1.5

)
=

(
−6.5

2.5981

)
vB = Ja

(
−1
1.5

)
=

(
0.5

−2.5981

)

vC = Ja

(
−1
−1.5

)
=

(
6.5

−2.5981

)
vD = Ja

(
1
−1.5

)
=

(
−0.5

2.5981

)
.

(1)

The four boundaries of Pc are characterized by points that are linear combinations of the above
four vertices, taken two by two in alphabetic sequence. Therefore, Pc will be a convex polytope.
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The largest Cartesian velocity in norm occurs at one (or more) vertex of Pc which is the farthest
away from the origin (in the following figures, the origin of the (vx, vy) space is located at the robot
end-effector for a more intuitive visualization). Hence,

Vmax,a = max{‖v‖, for v ∈ Pc} = max{‖vA‖, ‖vB‖, ‖vC‖, ‖vD‖} = ‖vA‖ = ‖vC‖ = 7 [m/s].

There are indeed two opposite and saturated joint velocities, q̇A and q̇C , that provide the maximum
norm of the Cartesian velocity.
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Figure 2: Polytope of feasible Cartesian velocities at qa = (π/6, π/3), centered at the end-effector
of the robot (shown in blue on its fixed base) — the vertices A to D are the images of those in
Fig. 1

The analysis is identical at the configuration qb = (π/6, 7π/8), see Fig. 3 (note the different
scale). There, the Jacobian takes the numerical values

Jb = J(qb) =

(
−1.2389 0.2611
0.6152 −1.9829

)

and we obtain, in place of (1),

vA = Jb

(
1

1.5

)
=

(
−0.8474
−2.3591

)
vB = Jb

(
−1
1.5

)
=

(
1.6305
−3.5895

)

vC = Jb

(
−1
−1.5

)
=

(
0.8474
2.3591

)
vD = Jb

(
1
−1.5

)
=

(
−1.6305
3.5895

)
,

(2)

from which
Vmax,b = ‖vB‖ = ‖vD‖ = 3.9425 [m/s].

The two opposite and saturated joint velocities that provide the maximum norm of the Cartesian
velocity are now q̇B and q̇D. This change is due to the different configuration, in much the
same way as in the analysis of manipulability (the associated velocity ellipsoid is not related to the
presence of hard bounds on the joint velocities, since in that case we map all possible q̇, normalized
with ‖q̇‖ = 1). However, the maximum norm of the Cartesian velocity is now almost halved w.r.t.
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Figure 3: Polytope of feasible Cartesian velocities at qb = (π/6, 7π/8), centered at the robot
end-effector
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Figure 4: Polytope of feasible Cartesian velocities at the singular configuration qs = (π/6, 0) —
the area of the polytope vanishes and only one possible direction for the end-effector velocity is
left, with limited amplitude

the previous case and also the area of the polytope is reduced. This is because the robot is close
to a singular configuration, the folded one.

To complete the analysis, we consider the singular configuration qs = (π/6, 0), i.e., with the
arm stretched (see Fig. 4). In this case, the Jacobian

Js = J(qs) =

(
−2.5 −1

4.3301 1.7321

)
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is singular and the polytope collapses. It is

vA = Js

(
1

1.5

)
=

(
−4

6.9282

)
= −vC

vB = Js

(
−1
1.5

)
=

(
1

−1.7321

)
= −vD,

(3)

and
Vmax,s = ‖vA‖ = ‖vC‖ = 8 [m/s].

This value is the largest of all cases. Indeed, the saturated joint velocity q̇A (or q̇C) is maximally
contributing to the Cartesian velocity in just one single direction when the arm is fully stretched,
similarly to when a human is throwing of a ball.

The Matlab source code generating the solution and the plots is available upon request.
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