
Robotics I
February 3, 2011

Consider a 3R anthropomorphic robot mounted on the floor and characterized by the Denavit-
Hartenberg parameters in Table 1, where D, L1, L2, and L3 are all strictly positive values.

i αi di ai θi

1 π/2 D L1 q1

2 0 0 L2 q2

3 0 0 L3 q3

Table 1: Table of DH parameters

1. Obtain the 3× 3 Jacobian matrix 0JL(q) relating the joint velocity q̇ to the linear velocity
0v of the origin O3 of frame 3 expressed in frame 0.

2. Characterize the singular configurations q of the Jacobian 3JL(q) relating q̇ to the linear
velocity 3v of the origin O3 of frame 3 expressed in frame 3.

3. Obtain the 3×3 Jacobian matrix 0JA(q) relating the joint velocity q̇ to the angular velocity
0ω of frame 3 expressed in frame 0. Show that this matrix is always singular and provide an
explanation of this result.

4. Assume that the robot is in the configuration

q∗ =
(

0
π

4
−π

4

)T

[rad]

with a joint velocity

q̇∗ =
(
q̇∗1 0 0

)T [rad/s], with q̇∗1 6= 0.

Determine the joint acceleration q̈ that should be imposed so that the resulting linear Carte-
sian acceleration of the origin O3 is directed along y3 and has an intensity A 6= 0. Provide
some comment on the structure of the obtained solution. In particular, is there a value A
such that only one joint needs to accelerate?

[150 minutes; open books]
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Solution
February 3, 2011

For item 1, we are interested in the velocity of point O3, whose position p = 0p is given by the
direct kinematics map

p =

 px

py

pz

 =

 cos q1 (L1 + L2 cos q2 + L3 cos(q2 + q3))
sin q1 (L1 + L2 cos q2 + L3 cos(q2 + q3))

D + L2 sin q2 + L3 sin(q2 + q3)

 = f(q). (1)

The Jacobian 0JL(q) can be obtained either by analytical differentiation of f(q) in (1) w.r.t. q or
by using the expression of the first three rows of the geometric Jacobian. Using the usual short
notation for trigonometric functions, the result is in both cases

0JL(q) =

 −s1(L1 + L2c2 + L3c23) −c1(L2s2 + L3s23) −L3c1s23

c1(L1 + L2c2 + L3c23) −s1(L2s2 + L3s23) −L3s1s23

0 L2c2 + L3c23 L3c23

 . (2)

For item 2, we have that

det 3JL(q) = det
(

2RT
3 (q3) 1RT

2 (q2) 0RT
1 (q1) 0JL(q)

)
= det 0JL(q).

Nonetheless, it is useful to rewrite the Jacobian in the successive frames 1, 2, and 3, because the
resulting expressions will be simplified. From Table 1, we have

0R1(q1) =

 c1 0 s1

s1 0 −c1
0 1 0

 , 1R2(q2) =

 c2 −s2 0
s2 c2 0
0 0 1

 , 2R3(q3) =

 c3 −s3 0
s3 c3 0
0 0 1

 .

From these we obtain

1JL(q) = 0RT
1 (q1) 0JL(q) =

 0 −(L2s2 + L3s23) −L3s23

0 L2c2 + L3c23 L3c23

−(L1 + L2c2 + L3c23) 0 0

 ,

2JL(q) = 1RT
2 (q1) 1JL(q) =

 0 −L3s3 −L3s3

0 L2 + L3c3 L3c3

−(L1 + L2c2 + L3c23) 0 0

 ,

and

3JL(q) = 2RT
3 (q1) 2JL(q) =

 0 L2s3 0
0 L3 + L2c3 L3

−(L1 + L2c2 + L3c23) 0 0

 .

In particular from the last expression, it is immediate to see that for any i ∈ {1, 2, 3}

det iJL(q) = −L2L3(L1 + L2c2 + L3c23)s3. (3)

2



Therefore, the singular configurations of JL(q) are:

s3 = 0 ⇐⇒ q3 = {0,±π} (third link is stretched or folded)

L1 + L2c2 + L3c23 = 0 ⇐⇒ px = py = 0 (O3 is on the axis z0 of joint 1)

For item 3, we compute the expression of the lower three rows of the geometric Jacobian. It is

0JA(q) =
(

0z0
0z1

0z2

)
=

  0
0
1

 0R1(q1)

 0
0
1

 0R1(q1)1R2(q2)

 0
0
1

 
=

 0 s1 s1

0 −c1 −c1
1 0 0

 . (4)

Matrix 0JA(q) is always singular, having constant rank equal to 2. This can be easily explained as
follows. The three degrees of freedom of the considered manipulator allow placing the end-effector
in any point of the robot primary workspace, and imposing a linear velocity in any direction when
the arm is out of singularities. However, the orientation of the end-effector frame can never be
changed around the unitary axis n(q1) =

(
c1 s1 0

)T . In fact, ω = αn(q1) 6∈ R{0JA(q)}, for
every q and for any scalar α.

Finally, for item 4 we use the second-order differential map

0p̈ = 0JL(q)q̈ + 0J̇L(q)q̇, (5)

evaluated at q = q∗, q̇ = q̇∗. The Cartesian acceleration is specified as

0p̈ = 0R3(q)3p̈ = 0R1(q1)1R2(q2)2R3(q3)

 0
A
0

 =

 −Ac1s23−As1c23
Ac23

 ,

which, when evaluated at q = q∗, yields the desired value

0p̈d = 0p̈|q=q∗ =

 0
0
A

 , (6)

i.e., the acceleration of the end-effector should be directed along z0, the vertical direction. Since
the determinant (3) of the associated Jacobian is nonzero at the given configuration, the solution
for the joint acceleration is obtained from (5) as

q̈ = 0J−1
L (q∗)

(
0p̈d − 0J̇L(q∗)q̇∗

)
,

where

0J−1
L (q∗) =


0 −L2

√
2

2
0

L1 + L2

√
2

2
+ L3 0 0

0 L2

√
2

2
+ L3 L3



−1

=


0

1

L1 + L2

√
2

2 + L3

0

−
√

2
L2

0 0

1
L3

+
√

2
L2

0
1
L3

 .

(7)
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Let 0J1 be the first column of the Jacobian 0JL. Thanks to the simple structure of q̇∗, for the
term involving the time derivative of the Jacobian we need only to compute(

0J̇L(q)q̇
)∣∣∣

q=q∗,q̇=q̇∗
=
(

0J̇1(q)
)∣∣∣

q=q∗,q̇=q̇∗
q̇∗1 =

(
∂ 0J1(q)
∂q1

q̇∗1

)∣∣∣∣
q=q∗

q̇∗1

=

 −c1(L1 + L2c2 + L3c23)
−s1(L1 + L2c2 + L3c23)

0


∣∣∣∣∣∣∣
q=q∗

(q̇∗1)2 =

 −(L1 + L2

√
2

2 + L3)
0
0

 (q̇∗1)2 .

(8)
As a result, from (6–8) the final solution is

q̈ = A


0

0

1
L3

+ (L1 + L2

√
2

2
+ L3) (q̇∗1)2


0

−
√

2
L2

1
L3

+
√

2
L2

 .

We note that no acceleration should be applied to the first joint (q̈1 = 0), as could be argued
already from (6). In fact, any angular acceleration imposed to joint 1 (along the vertical joint
axis z0) would produce a centrifugal acceleration on the end-effector, which is in contrast with the
requested zero acceleration along the x0 and y0 axes in (6). Moreover, if

A = −
(

1 +
L3

L2

√
2
)

(L1 + L2

√
2

2
+ L3) (q̇∗1)2

then q̈1 = q̈3 = 0 in the solution.

∗ ∗ ∗ ∗ ∗
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