
Robotics I
June 10, 2009

Consider the planar PRP robot with n = 3 joints in the figure above. The world reference frame
RFw = (xw,yw, zw) and the end-effector frame RFe = (xe,ye, ze) are also shown.

• Assign the robot reference frames according to the Denavit-Hartenberg (DH) convention and
write down the associated table of parameters. Moreover, specify the (constant) transforma-
tion matrices wT0, between the world frame and frame 0 of DH, and 3Te, between frame 3
of DH and the end-effector frame.

• Based on the variables q defined in the Denavit-Hartenberg convention, compute the analyt-
ical Jacobian J(q) for a task involving only the end-effector position in the plane of motion,
and analyze its singular configurations. With the robot in a singular configuration q0, define
a set of base vectors for each of the following four linear subspaces:
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• For a motion task of dimension m = 3 specified for the robot end-effector, consider the use
of a kinematic control law in the task space,

q̇ = J−1(q) (ṙd + KP (rd − f(q)) , (1)

where r ∈ R3 includes the position (in the plane) as well as the orientation of the end-effector
(i.e., the angle φ between the horizontal axis xw and the axis xe) and f(q) is the direct
kinematic function associated to these task variables. Assume that the (positive definite)
gain matrix KP is chosen as diagonal, and let the joint velocities be bounded as |q̇i| ≤ Vi,
with given values Vi > 0 (i = 1, 2, 3).

a) With the desired task velocity being ṙd =
(

0 0 −1
)T , determine a joint configura-

tion q∗ which is nonsingular for the task (and ‘matched’ to it, i.e., e = rd−f(q∗) = 0 for
a suitable rd) and is such that the desired task can never be realized without violating
one of the bounds on the joint velocities.

b) Let the robot initial configuration be q(0) =
(

1.2 π/2 1
)T , and let rd(0) =(

1.5 1.5 −π/4
)T and ṙd(0) =

(
0 1 0

)T be the specified task at time t = 0.
Define the numerical values of the diagonal matrix KP in the control law (1) so that the
initial task error e(0) will be reduced as fast as possible without violating the following
bounds on the joint velocities: V1 = 5 [m/s], V2 = π [rad/s], and V3 = 4 [m/s].
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Solution
June 10, 2009

A possible assignment of the Denavit-Hartenberg frames is shown in the figure below, together
with the associated table of parameters.
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From this, it is easy to obtain the general expression of the direct kinematics for this robot:

0T 3(q) =
(

0R3(q) 0p3(q)
0T 1

)
= 0A1(q1) 1A2(q2) 2A3(q3)

=


cos q2 0 sin q2 q3 sin q2

0 −1 0 0
sin q2 0 − cos q2 q1 − q3 cos q2

0 0 0 1

 .

Use of the additional transformations between the frames defined in the problem text leads to

wT e(q) = wT 0
0T 3(q)3T e =


1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1

 0T 3(q)


0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1



=


sin q2 cos q2 0 q3 sin q2
− cos q2 sin q2 0 q1 − q3 cos q2

0 0 1 0
0 0 0 1

 =
(

wRe(q) wpe(q)
0T 1

)
,
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from which one can obtain the kinematic functions of interest (which could be derived also by direct
inspection, once the joint variables have been defined according to the Denavit-Hartenberg con-
vention). To this end, note that the final rotation matrix wRe(q) takes the form of an elementary
rotation matrix by an angle φ = q2 − π/2 around the world axis zw. In fact, it is cosφ − sinφ 0

sinφ cosφ 0
0 0 1

 =


cos
(
q2 −

π

2
)
− sin

(
q2 −

π

2
)

0

sin
(
q2 −

π

2
)

cos(
(
q2 −

π

2
)

0

0 0 1

 =

 sin q2 cos q2 0
− cos q2 sin q2 0

0 0 1

 = wRe(q2).

For the (first) task involving only the end-effector position on the plane, it is

r1 = f1(q) =

(
wpx

wpy

)
=

(
q3 sin q2

q1 − q3 cos q2

)
,

and the analytical (2× 3) Jacobian matrix is

J1(q) =
∂f1(q)
∂q

=

(
0 q3 cos q2 sin q2
1 q3 sin q2 − cos q2

)
.

Analyzing the three minors of J1(q), this matrix looses rank if and only if sin q2 = 0 and q3 = 0, i.e.,
when the third robot link is oriented along the vertical direction and the third joint is completely
retracted. In such a configuration, the Jacobian becomes

J1(q0) =

(
0 0 0
1 0 ∓1

)
,

where the upper sign corresponds to the case q2 = 0 and the lower sign to the case q2 = π. The
four linear subspaces indicated in the text are spanned by the following basis vectors:
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)
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0

 ,

 −1
0
∓1

 R
(
JT (q0)

)
=


 1

0
∓1

 in R3,

R
(
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)
=
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0
1

)}
N
(
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)
=
{(

1
0

)}
in R2.

For the end-effector planar positioning and orientation task (of dimension m = 3), it is

r = f(q) =


wpx

wpy

φ

 =

 q3 sin q2
q1 − q3 cos q2
q2 − π/2

 . (2)

The analytical (3× 3) Jacobian matrix associated to this task,

J(q) =
∂f(q)
∂q

=

 0 q3 cos q2 sin q2
1 q3 sin q2 − cos q2
0 1 0

 ,

is singular if and only if sin q2 = 0.
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Under the condition of question a), namely with sin q∗2 6= 0, it is

q̇ = J−1(q∗)ṙd =
1

sin q∗2

 cos q∗2 sin q∗2 −q∗3
0 0 sin q∗2
1 0 −q∗3 cos q∗2


 0

0
−1

 =
1

sin q∗2

 q∗3

− sin q∗2
q∗3 cos q∗2

 .

It is then easy to see that, by sufficiently extending the prismatic joint 3, the robot will violate the
velocity bound at the first joint for any assigned value V1 > 0. More specifically, it is

q∗3 > V1 · | sin q∗2 | > 0 ⇒ |q̇1| > V1.

Under the condition of question b), the robot is not in a singularity at the initial time t = 0.
Thus, using the problem data and eq. (2), the initial control velocity can be computed as

q̇(0) = J−1(q(0))
(
ṙd(0) + KP (rd(0)− f(q(0))

)

=

 0 1 −1
0 0 1
1 0 0



 0

1
0

+


0.5Kr1

0.3Kr2

−π
4
Kr3


 =


1 + 0.3Kr2 +

π

4
Kr3

−π
4
Kr3

0.5Kr1

 ,

having set KP = diag{Kr1 ,Kr2 ,Kr3}. From these expressions, one can directly choose two out of
the three control gains:

|q̇3(0)| ≤ V3 ⇒ 0.5Kr1 ≤ V3 = 4 ⇒ Kr1 = 8 > 0,

|q̇2(0)| ≤ V2 ⇒ π

4
Kr3 ≤ V2 = π ⇒ Kr3 = 4 > 0.

Finally, using this definition, also the remaining gain is chosen:

|q̇1(0)| ≤ V1 ⇒ 1 + 0.3Kr2 +
π

4
Kr3 = 1 + 0.3Kr2 + π ≤ V1 = 5 ⇒ Kr2 =

10
3

(4− π) > 0.

With the selected gains, all joint velocities will saturate at time t = 0 (the second joint velocity
being at its negative limit −V2 = −π) and, as a result, the fastest decrease of the initial task error
e(0) = rd(0) − f(q(0)) will be realized (with the task error converging anyway exponentially to
zero, in a decoupled way for each task component). The situation at time t = 0 is depicted in the
following figure, where the desired initial robot configuration is the lightly shaded one.

∗ ∗ ∗ ∗ ∗
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