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as xk x i and yk y" Therefore, as k -, oo (i.e., rk 0),

r k kg(nxk)h(yk)) °->
,

that is,
Prk(k)kk f
Pn ( n x ) n( Yn s*)

which implies the existence of a positive integer K2 such that

Pn (Yn ,x )fn(Yn,j)I <,EC for all k >K2 (25)

for e in (23). Besides, from the continuity of f, at any ( y,n x), we
have the existence of a positive integer K3 such that

(fix) _ g ( yrk(~~~~~~~~~~~~~~~~~~~~~~~~~~~~X'),Xk))I<Elfor allk K

(26)

Set K = max(KI, K2, K3). Then, using (25), (23), and (26), in
turn, we have the following relations for all k > K.

pknr( nk Xk ) < fn( ynt j) +

=fn( n x E < fn( (xk x (27)

Since 4 > 0,

f(Yn (Xk x )<X P ( k(xk ),x) (28)

Equations (27) and (28) yield

prk( Yk k ) prk( nrk(Xk )X) for all k > K.

This relation and (24) contradict that ynrk(xk) is optimal for (3) in
response to xk and rk. Therefore, any accumulation point is
optimal for (4) with i.

Existence and Optimality of the Limit Point: Since the optimal
solution yn(i) to (4) with i is unique under the assumption d),
the accumulation point of ynrk(xk)} is also unique. Therefore,
the accumulation point becomes a limit point of { nr (xk)}). Thus,
we can conclude that Yn (xk) converges toYn(x).
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Kinematic Control Equations for Simple Manipulators

RICHARD P. PAUL, SENIOR MEMBER, IEEE, BRUCE SHIMANO,
AND GORDON E. MAYER

Abstract-The basis for all advanced manipulator control is a relation-
ship between the Cartesian coordinates of the end-effector and the manipu-
lator joint coordinates. A direct method for assigning link coordinate
systems and obtaining the end-effector position in terms of joint coordi-
nates is reviewed. Techniques for obtaining the solution to these equations
for kinematically simple manipulators, which includes all commercially
available manipulators, are presented.

INTRODUCTION

A serial link manipulator consists of a sequence of mechanical
links connected together by actuated joints. Such a structure
forms a kinematic chain and may be analyzed by methods
developed by Denavit and Hartenberg [10]. The results of this
analysis are the matrix equations expressing manipulator end-
effector Cartesian position and orientation in terms of the joint
coordinates. These equations may be obtained for any manipula-
tor independent of the number of links or degrees of freedom.

In this correspondence we first review the method of obtaining
these equations extending the procedure of assigning coordinate
frames to include simple manipulators which have many zero
length links and intersecting joint axes. While we may obtain
these kinematic equations for any manipulator it is their solution
which is of interest. Given a desired Cartesian position and
orientation of the manipulator's end-effector what are the neces-
sary joint coordinates? While there is only one end-effector
position corresponding to a given set of joint coordinates, there
are a number of configurations of the manipulator's links all of
which place the end-effector in the same position and orientation.
Normally only one solution corresponding to a-given kinematic
configuration is desired (e.g., elbow up or down, etc.), rather than
the entire set of solutions. Frequently the solution is to be
embedded in a real-time servo loop and only a very minimum
number of mathematical operations may be performed.
When the manipulator geometry is simple and well understood

a trigonometric solution may often be obtained [I]-[3], [8], [9].
However, six-degree-of-freedom manipulators are sufficiently
complex that the direct trigonometric method is too difficult to
apply. We present a method of obtaining a solution to the
kinematic equations based on the Hartenberg-Denavit matrices
from which the solution is obtained explicitly in the case of
simple manipulators. The existence of an explicit solution to the
kinematic equations for any manipulator is of great importance
in evaluating the manipulator's suitability for computer control.
Iterative solution techniques can involve an order of magnitude
and more computation than an explicit solution. Pieper [5] in his
thesis considers a series of simple manipulators for which a
closed-form solution is obtainable. It is to these "simple" mani-
pulators that the solution method presented in this correspon-
dence is applicable. We have solved the kinematic equations for
all commercially available manipulators and find that the equa-
tions can be readily obtained in a matter of hours.
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COORDINATE FRAmEs
A serial link manipulator consists of a sequence of links

connected together by actuated joints. For an n-degree-of-freedom
manipulator, there will be n links and n joints. The base of the
manipulator is link 0 and is not considered one of the six links.
Link 1 is connected to the base link by joint 1. There is no joint
at the end of the final link. The only significance of links is that
they maintain a fixed relationship between the manipulator joints
at each end of the link (7). Any link can be characterized by two
dimensions: the common normal distance a, and an the angle
between the axes in a plane perpendicular to an. It is customary
to call an "the length" and a,n "the twist" of the link (see Fig. 1).
Generally, two links are connected at each joint axis (see Fig. 2).
The axis will have two normals connected to it, one for each link.
The relative position of two such connected links is given by d,,
the distance between the normals along the joint n axis, and 0On
the angle between the normals measured in a plane normal to the
axis. dn and 0,n are called 'the distance" and "the angle" between
the links, respectively.

In order to describe the relationship between links, we will
assign coordinate frames to each link. We will first consider
revolute joints in which 0,, is the joint variable. The origin of the
coordinate frame of link n is set to be at the intersection of the
common normal between joints n and n + 1 and the axis of joint
n + 1. In the case of intersecting joint axes, the origin is at the
point of intersection of the joint axes. If the axes are parallel, the
origin is chosen to make the joint distance zero for the next link
whose coordinate origin is defined. The z axis for link n shall be
aligned with the axis of joint n + 1. The x axis will be aligned
with any common normal which exists and is directed along the
normal from joint n to joint n + 1. In the case of intersecting
joints, the direction of the x axis is parallel or antiparallel to the
vector cross product Zn-I X Zn. Notice this condition is also
satisfied for the x axis directed along the normal between joints n
and n + 1. For the nth revolute joint when xn,, and xn are
parallel and have the same direction, 0,n is at its zero position.

In the case of a prismatic joint the distance dn is the joint
variable. The direction of the joint axis is the direction in which
the joint moves. Although the direction of the axis is defined,
unlike a revolute joint, its position in space is not defined (see
Fig. 3). In the case of a prismatic joint the length an has no
meaning and is set to zero. The origin of the coordinate frame for
a prismatic joint is coincident with the next defined link origin.
The z axis of the prismatic link is aligned with the axis of joint
n + 1. The xn axis is parallel or antiparallel to the vector cross
product of the direction of the prismatic joint and Zn. For a
prismatic joint, we will define its zero position, with di = 0, to be
when xn,, and xn intersect. With the manipulator in its zero
position, the positive sense of rotation for revolute joints or
displacement for prismatic joints can be decided and the sense of
the direction of the z axes determined.
The origin of the base link (zero) will be coincident with the

origin of link 1. If it is desired to define a different reference
coordinate system then the relationship between the reference
and base coordinate systems can be described by a fixed homoge-
neous transformation [6]. At the end of the manipulator the final
displacement d6 or rotation 06 occurs with respect to z5. The
origin of the coordinate system for link 6 is chosen to be
coincident with that of the link 5 coordinate system. If a tool or
end-effector is used whose origin and axes do not coincide with
the coordinate system of link 6, the tool can be related by a fixed
homogeneous transformation to link 6.

Having assigned coordinate frames to all links according to the
preceding scheme, we can establish the relationship between
successive frames n - 1, n by the following rotations and transla-
tions.

Joint nil

Fig. 1. Length a, and twist a, of a link.

Translate along rotated xn_l = x", a length a,.
Rotate about x, the twist angle a,,

This may be expressed as the product of four homogeneous
transformations relating the coordinate frame of link n to the
coordinate frame of link n - 1. This relationship is called an A
matrix:

co

n

0

-SOCa
COCa
Sa
0

S#Sa
-CoSa

Ca
0

aCO
aSO
d
1 I

(1)

where S and C refer to sine and cosine, respectively. For a
prismatic joint the A matrix reduces to

[co

Lo0

- SoCa

Sa
0

SOSa
-CoSa

Ca
0

0
0
d .
1 j

(2)

Once the link coordinate frames have been assigned to the
manipulator the various constant link parameters can be tabu-
lated: d, a, and a for a link following a revolute joint and, 0 and
a for a link following a prismatic joint. Based on these parame-
ters, the constant sine and cosine values of a may be evaluated
and the values for the six Ai transformation matrices determined.

KINEMATIC EQUATIONS
Having assigned coordinate frames to a manipulator it is

possible to obtain the Cartesian position and orientation of the
manipulator end-effector when given the joint coordinates.
The description of the end of the manipulator, link coordinate

frame 6, with respect to link coordinate frame n - I is given by
Un where

U.= A.*A+,* ...***A6. (3)

The end of the manipulator with respect to the base, known as
T6, is given by U1:

T6= U,= A,*A2*A3*A4*A5*A6 (4)

If the manipulator is related to a reference coordinate frame by a
transformation Z and has a tool attached to its end described by
E, we have the description of the end of the tool with respect to
the reference coordinate system described by X as follows (4):

X= Z*T6*E. (5)

Rotate about z,,-1' an angle 0,,
Translate along z,, 1'a distance dn,,

In Fig. 4 the PUMA arm (Unimate 600 Robot) is shown with
coordinate frames assigned to the links. The parameters are
shown in Table I.
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Joint n Joint ntl

n+l
n

Joint n-i

0n-1

x n

I ink

Fig. 2. Link parameters 0, d, a, a.

Joint n

Fig. 3. Link parameters d, a for prismatic joint.

The A matrices for the PUMA arm are as follows:

[C1 0 -S1 0

Al = SI 0 C, 0

O -1 0 0
0 0 0 1

C2 -S2 0 a2C2

A2= S2 C2 0 a2S2
0 0 1 0
[0 0 0 1

(6)

(7)

[C3 0 S3 a3C3

A3= S3 0 -C3 a3S3 (8)
0 1 0 d3

L[00 0 1]-

-C4 0 - S4 0

A4 S4 0 C4 0

j0 -l 0 d
0 0 0 1

C5 0 S5 0
A5= S5 0 -Cs °

0 1 0 0

A6= S6 C6 0 0

O 0 1 0
O O O 1

(9)

(10)

(11)

where S, refers to sin (0k) and Ci refers to cos (0,). The product of
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where S23 refers to sin (02 + 03) and C23 refers to cos (02 + 03),

Z5)Z6

~nx
U, = AIU5 = T6 ny

z

x

Fig. 4. PUMA manipulator.

TABLE I
LINK PARAMETERS FOR PUMA ARM

Joint ao 0° d a Range
I -900 0l 0 0 01:+/-1600
2 0 02 0 a2 02:+45 - 225°
3 900 03 d3 a3 03:225' -450
4 -900 04 d4 0 04:+/-1700
5 900 05 0 0 05:+/-1350
6 0 06 0 0 06:+/-1700

a2 =17.000 a3= 0.75
d3 = 4.937 d4 = 17.000

the A matrices, starting at link 6 and working back to the base,
for the PUMA arm are

U6 = A6 (12)

oX ax Px
oy ay py
oz az pz
O O 1

(17)

(18)

(19)

(20)

(21)

where

nx Cl[C23(C4C5C6- S4S6)- S23S5C6]
-SI[S4C5C6+ C4S6]

ny= Sl[C23(C4C5C6- S4S6) - S23S5C6]
+C1[S4C5C6+ C4S6]

n z = -S23(C4C5C6- S4 S6 - C23 S5 C6
Ox= Cl[-C23(C4C5S6+ S4C6) + S23S5S6]

-SI[-S4C5S6+ C4C6]
oy= SII-C23(C4C5S6+ S4C6) + S23S5S6]

+ Cl[-S4C5S6 + C4C6]

Oz = S23(C4C5 S6 + S4C6) + C23 S5 S6

ax= Cl(C23C4S5 + S23C5) - SS4S

ay= Sl(C23C4S5 + S23C5) + CIS4SA
az = -S23C4S5 + C23C5

Px = Cj(d4S23 + a3C23 + a2C2) - Sjd3

py = SI(d4S23 + a3C23 + a2C2) + CId3
PZ= -(-d4C23 + a3S23 + a2S2).

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

In order to compute the right hand three columns of T6, we
require 12 transcendental function calls, 34 multiplies, and 16
additions. The first column of T6 can be obtained as the vector
cross product of the second and third columns.

If the joint coordinates are given, the position and orientation
of the hand are obtained by evaluating these equations to obtain
T6. The position and orientation of a tool with respect to a base
coordinate frame can now be obtained from (5).

Cs5C6

U5=A5U6 & 5 6

[0

C4C5C6 - S4S6

- s5C6
0

-C5S6 S5 0
-S5S6 -C5 0

C6 0 0

0 0 1

-C4C5S6- S4C6
-S4C5S6+ C4C6

S5S6
0

SOLUTION

(13) In order to control the manipulator, we are interested in the
reverse problem, that is, given X in (5), what are the correspond-
ing joint coordinates?

n 1 We may first obtain T6 from (5) as
(L4 I)5 U

S4s5 0
C5 d4
0 1]

(14)

T6= Z-'*X*E- (30)

and then the traditional approach is to solve the matrix equation
T6= A1 *A2*A3*A4*A5*A6 (31)

C3(C4C5C6- S4S6 ) -S3S5C6 -C3(C4C5S6 + S4C6 ) + S3S5S6

U3 =A3U4 = S3 (C4c5 C6 -S4S6 ) + C3 S5 C6 -S3 ( C4C5 6 + S4C6 ) -C3 S5 6
S4C5C6 + C4S6 -S4C5sS6 + C4C6

0 0

U2= A2U3 =

C23(C4C5C6- S4S6) - S23S5C6
S23 (C4C5C6- S4S6 ) + C23 S5C6

S4C5C6 + C4S6
L 0~~~

C3C4s5 + S3C5
S3c4s5 - C3c5

0

- C23 (C4C5S6 + S4C6 ) + S23s5s6 C23C4S5 + S23C5
-S23 ( C4C5 6 + S4c6 ) C23 S5 S6 S23C4 S5 -C23C5

-S4c5s6 + C4C6 S4s5

d4S3 + a3C3

-d4C3 + a3S3

d3
I i

d4S23 + a3C23a2C2
-d4C23 + a3S23 + a2S2

U4 = A4U5 =

(15)

I(16)

. .. ........ . ......... . . . .... . ..... ... .. ..
452

0 0 I

/" C,



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-1 1, NO. 6, JUNE 1981

where T6 is given numeric values. With numeric values assigned
to the elements of T6, the required values of 01, 02, 03, 04, 05, and
06 can be obtained by simultaneously solving (18)-(29). This
approach is difficult for the following reasons: the equations are
transcendental; we will need both the sine and cosine in order to
determine angles uniquely and accurately; the manipulator ex-
hibits more than one solution for a given position; and we have
twelve equations in six unknowns.

There are, however, six other matrix equations obtained by
successively premultiplying (31) by the A matrix inverses:

All the elements on the right side of (45) are functions of 02, 023,
d4, 04, 05, and 06 except for element 34. We may equate the 34
elements to obtain

fl3(p) = d3 (46)
or

-Slp,+ Clpy= -d3. (47)
In order to solve equations of this form we make the following
trigonometric substitutions:

A, *T6= U2

A2 *A1 '*T6= U3

A)-1 *A2- *A, l*T6= U4
A4- '*A3 '*A2 '*A, *1T6= U5

A5- *A4 l*A3 l*A2 l*A-'*T6= U6.

(32)

(33)
(34)
(35)
(36)

The matrix elements of the left sides of these equations are
functions of the elements of T6 and of the first n -1 joint
variables. The matrix elements of the right hand sides are either
zero, constants, or functions of the nth to 6th joint variables. As
matrix equality implies element by element equality we obtain 12
equations from each matrix equation, that is, one equation for
each of the components of the four vectors n, o, a and p.
Equating elements of these matrix equations frequently results in
equations yielding joint variables explicitly. We will illustrate the
various forms of these equations by developing the equations for
the PUMA arm.

If we premultipy (31) by A1 we obtain

A * T6= A2*A3 *A4 *A *A6

AI 1*T6= U2.

The left side of (38) is given by

A C,

A,1*= -SI

SI
0
Cl
0

o ° nx

-1 0 ny
o ° Inz
0 1 J 0

Ox
Oy

OZ

0

ax
ay
az

0

(37)
(38)

PI
py
Dn

Px= rcos

py= r sin 4

where

r= +(p2±p 2)/

t-tan (P )

(48)

(49)

(50)

(51)

As either the numerator or denominator of (51) can be zero we
will use the arctangent function of two arguments to obtain
values of 0. This arctangent function uses the sign of the numera-
tor and denominator to determine the correct quadrant for the
resulting angle and is defined over the range-iT <s <'r. Sub-
stituting for p, and py in (47) we obtain

SbCO, - COSO,= d3/r
with

O< d3/r- 1.

Equation (52) reduces to

S(4 - 01) = d3/r
with

° < 0 - 1 < f .

We may obtain the cosine as

C(O -01 ) = +A1-rl(d3lr)2

(52)

(53)

(54)
where the minus sign corresponds to a left-hand shoulder config-
uration of the manipulator and the plus sign corresponds to a

(39) right-hand shoulder configuration. Finally,

The inverse of a homogeneous transformation is simple to obtain
(see Appendix I) and the product of these two matrices is 01=tan -IP-tan- 3

Px /IVr2-d2
fll(n)

AIT1 fl2(n)
I f13(n

fil(o) fll(a)

f12(o) f12(a)
113(0) f13(a)

0 0

112(P) (40)

113(P)I

I11

where

fil=Clx+sly (41)

f12= -z (42)
f13 =-SIx+ C,y (43)

and x, y, and z refer to components of the vectors given as
arguments to fl,I1'i 2, andf 3, for example

(44)

Having determined 01 the left side of (38) is now defined.
Whenever we have the left side of one of (32)-(36) defined, we
examine the right side for elements which are a function of
individual joint coordinates. In the case of the PUMA arm, as

with any arm with two or more joint axes parallel, the T6 matrix
is expressed in terms of sums or differences of the angles relating
to the parallel axes. In order to solve the kinematic equations, the
sum or difference of the angles must be determined before the
angles themselves can be found. In addition the solution for these
sums of angles involves the sum of the squares of two equations.
Such is the case in order to solve for 02 and 03. The 14 and 24
elements of (38) are

d4S23 + a3C23 + a2C2 = ClPx + SIPy
- d4C23 + a3S23 + a2S2 =-pz

(56)

(57)fTl(n) = Cine + Sln
The right side of (38) is obtained fromn (16) and is given by

C23(C4C5C6- S4S6) - S23S5C6 -C23(C4C5S6 + S4C6 ) + S23S5S6 C23C4S5 + S23C5 d4S23 + a3C23 + a2C2
Ss23 (C4C5C6- S4S6 ) + C23S5 C6 -S23 (C4C5 6 + S4C6 ) -C23 S5 6 S23C4S5- C23C5 -d4C23 + a3S23 + a252

4C0C6+ C40S6 -S4C56 + C4C6 0455 d3
L~~~~ O 0 1

(55)

453
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where

Clpx + S1py =fi1p (58)

-Pz = fi2p (59)

Squaring, adding, and simplifying:

f12,p + f22p- d4- a32- a2= 2a2d45S3+ 2a2a3C3. (60)

Since the left side is known and the only variables are S3 and C3,
this equation is of the form of (47). It can be solved to yield

O3
= arc rc td-an (61)

where

d=fllp 2p d4 a3- a2

e = 4a2a2 + 4a 2d2 (constant).

Evaluating the elements of (33) we obtain

[21(n)
f22(n)

f23(n )
LO

(62)

(63)

f2l(o) f21(a) f2(P) -a2
f22(o) f22(a) f22(P) =U
123(o) f23(a) f23(P) -

0 0 1 1

(64)

and

02= 023 - 03- (79)
With the left side of (68) now defined, we check the right side for
functions of single variables. The 13 and 23 elements give us
equations for the sine and cosine of 04 if sin(05) is not zero.
When sin 05 = 0, 05= 0 and the manipulator becomes degenerate
with both the axes of joint 4 and joint 6 aligned. In this state it is
only the sum of 04 and 08 which is significant. If 05 is zero we are
free to choose any value for 04. The current value is frequently
assigned:

(80)
(81)

C45= C23(Cia,+ Slay) -23az
S4SS=-Sla. + Clay

and

04 tan -Sla,+ Clay
C23(Cla, ± Slay) - 2a

if
05> 0

and

Q4-04+1800 ifO5<O.

Evaluating the elements of (35) we obtain

(82)

(83)

where

f21 = C2(CIX + S1Y) -S2z
122 = -S2(CIX + SIy) - C2z

f23 = -SIX + CIy.

Since this yields nothing, we evaluate (34) as

f31(o) f31 (a) f3l (p )-a2C3-a3
f32(0) 132(a ) f32(p) + d3 -U4
133(o) f33(a) f33(P))-a2S3

0 0 1 1

(68)

f4l(nf) f41(0)
(65) 142(n) f42(o)
(66) f43(n) f43(o)
(67) [0 0

f4l(a) 0 C5C6

f42(a) 0 S5C6

143(a ) 0 56

0 1 _ O

-C5S6 S5
-S5 S6 -C5
C6 0
0 0

0
01
01
11i

(84)
where

f41-C4[C23(C1X+SIy)-S23Z]+S4[-S1X+C1y] (85)
(86)

143 = S4 [C23(CIx + SIy) - S23z ] + C4 [-S1X + CIy ].

(87)

131 = C23(C1X + SIY) - S23z

f32 =-SIX + CIy

f33 = S23(C1X + SIy) + C23z

equating the 14 and 34 terms we obtain

C23f,lp-523Pz = a2C3 + a3

S23 fllp + C23 pz = d4+ a2S3.

(69) From the right side of (84), we can then obtain equations for S5,
C5, 56 and C6 by inspection. When both sine and cosine are

(70) defined we obtain a unique value for the joint angle. We obtain a

(71) value for 05 by equating the 13 and 23 elements of (84):
S5 C4[C23(Clax+ Slay) - S23az] + S4[-Slax + Clay]

(72)

(73)
Since C23 and S23 are the only variables, we can solve the above
equations simultaneously to yield:

S3=W2flIp-WP2
w1s2l-+ pw2

CWlfllp+W2Pz
-

1 -zI3 p2

where

w= a2C3 + a3

w2 = d4 + a2S3

(74)

C5 = S23(Cla±+ Slay) + C23a,

and obtain 05 as

(88)
(89)

05 IC4[C23(Clax± Slay) S23aj] + S4[-S1ax+ C,ay]
2( Cla+S23(Cl a + a ) + C234a

(90)
While we have equations for both S6 and C6, the equation for 56

(75) is in terms of elements of the first column which involves the use
of the n vector of T6. The n vector of T6 is not usually made
available as it represents redundant information. It can always be
computed by the vector cross product of the o and a vectors. By

(76) evaluating the elements of (36) we can obtain equations for S6
and C6 as a function of the o vector:

(77)
therefore

23 =arctanf
wlfllp+ W2Pz

(78)

f5[(n) f5l(o) 0 -S6

f52(n) 152(o) 0 ° = 56 C6 0 0 (91)
53(n) 53(o) 1 1 °
L0 0 0 I L0 0 01]i

f31(n)
f32(n )
f33(n)

0

f42 =-S23(C1X + SIY) - C23Z
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where

f5l C5{C4[C23(CIX + SIy) - S23Z] + S4[-SIx + C1y] }

+S5{-S23(CIX + SIy) - C23Z} (92)

f52 -S4[C23(CIX±+SIy)-S23Z ]+C4[-SIX+ CIy] (93)

f53= S5{C4[C23(CIx + SIy) - S23Z] + 54 -SIx + C1y])

+ C5{S23(CIx + SIY) + C23Z}' (94)

By equating the 12 and 22 elements we obtain expressions for S6
and C6:
S6 =-C5 {C4 [ C23 (Clox + S oy -s230z] + S4[Slox

+Cloy] } + S5 (S23(CoIx + Sloy) + C230Z} (95)

C6 = -S4[C23(CoIx + Sloy) - S23oz] + C4[-S1ox + Cloy] -

(96)
We obtain an equation for 06 as:

Its inverse is given by

Ix
T - 1= mx

nx

L 0

Iy
mfy
ny

lz _p.1
mz -p.m,

nz -p*n
0 1i

(99)

where the terms of the right-hand column are obtained using
vector dot product. That (99) represents the inverse is easily
verified by forming the matrix product and checking that the
result is an identity matrix:

Ix

-1Tmx
nx

L 0

I I -p-l 1x
my mz -p.m Iy
ny nz -p-n Ix
O 0 1 J O

mx

my
mz
0

nx
ny
nz
0

py

pzI

(100)

-C5 { C4[C23(Cox + sloy) - S23oZ] + S4[--Sox + C1oy] } + S5{S23(Co±x+ Sloy) + C23oZ)
6=tan )S4[C23(Clox+ Soy)-S23oz] + C4[-S1ox+ Cloy]

Even in the case where 04 is undefined because the manipulator
configuration is degenerate, once a value is assigned to 04 the
correct values for 05 and 06 are determined by these equations.
This solution corresponds to 16 transcendental function calls, 38
multiplies, and 25 additions.

EXTENSION TO OTHER MANIPULATORS
This solution technique, demonstrated with the PUMA mani-

pulator, is valid for kinematically simple manipulators, including
all commercially available manipulators for which solutions have
been obtained. There are, however, some manipulators whose
configurations mandate a slightly different approach to the solu-
tion. In the case of a manipulator with an offset at the hand, the
problem was inverted and the solution to the kinematic problem
to position the base at T6- was solved.

There are two common pitfalls in obtaining solutions which
should be avoided. One of these is division by the sine or cosine
of an angle. The other is not maximizing the use of common
expressions. For example, after solving for 04 from (82), a possi-
ble method to determine 05 would be to equate the 2, 3 and 3, 3
elements of (68). In order to do this, the 2,3 element (S4S5)
would have to be divided by S4. This leads to inaccuracy when S4
is near or equal to zero. By extending the method one more step
and premultiplying by A3 both problems were avoided.

SUMMARY
We have reviewed the method of assigning coordinate frames

to the links of a manipulator. In terms of these coordinate frames
the kinematic equations can be developed in a straightforward
manner. These equations can be obtained for any manipulator. If
the manipulator is kinematically "simple," the solution to the
kinematic equations can be obtained in a very straightforward,
error-free manner.

APPENDIX I
Given a homogeneous transformation represented by four vec-

tors 1, m, n, andp

Ix
T= Iy

iz

L 0

(98)

mx nx Px
my ny py.
mz nz PZ
O O 1

T.4

T - '*T = m *l
n-

l-m
m m
n m
0

1 m
m*n
n *n
0

01
01
0 ,

11-
(101)

As the three vectors 1, m, and n are orthogonal we have

1-l=mIm = n-n = 1 (102)

and

lm =ln = n-m = O (103)

and thus (101) reduces to an identity matrix.
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