Robotics 1

Robotics 1

Trajectory planning

Prof. Alessandro De Luca

DIPARTIMENTO DI INGEGNERIA INFORMATICA
AUTOMATICA E GESTIONALE ANTONIO RUBERTI

SAPIENZA

QS UNIVERSITA DI ROMA

Trajectory planner interfaces

functional robot units

1 external sensors I'

task planner* trajectory planner* control*

* = programming “points”

robot action described
as a sequence of poses
or configurations ~
(with possible exchange
of contact forces)

Robotics 1

internal sensors

reference profile/values
mm) (continuous or discrete)
for the robot controller

N

TRAJECTORY
PLANNER

2

Trajectory definition
a standard procedure for industrial robots

1. define Cartesian pose points (position+orientation) using the teach-box

2. program an (average) velocity between these points, as a 0-100% of a
maximum system value (different for Cartesian- and joint-space motion)

3. linear interpolation in the joint space between points sampled from the
built trajectory

examples of additional features
a) over-fly A b) sensor-driven STOP ¢) circular path
N/

through 3 points
D

main drawbacks

m semi-manual programming (as in “first generation” robot languages)
m |imited visualization of motion

- a mathematical formalization of trajectories is useful/needed

Robotics 1 3

Some typical trajectories

= Point-to-point Cartesian motion with an intermediate point

video video

Straight lines as Cartesian path Interpolation with Bezier curves

Robotics 1 4

video

video

Square path at constant speed Square path with
trapezoidal speed profile

Robotics 1 5

Joint and Cartesian trajectories

= assigned task: arm reconfiguration between two inverse
kinematic solutions associated to a given end-effector pose

= jnitial and final configuration

= same Cartesian pose (no change!): the
motion cannot be fully specified in the
Cartesian space

= to perform this task, the robot should
leave the given end-effector pose and

heren = m = 6 then return to it

(8 IK solutions) * @ self-motion could be sufficient
- if there is (task) redundancy (m < n)
— if the robot starts in a singularity

for “simple” manipulators (e.g., all industrial robots) and m = n, the execution
of these tasks will require the passage through a singular configuration

Robotics 1 6

Joint and Cartesian trajectories

= a reconfiguration task (or... passing through singularity)

video video

three-phase trajectory: single-phase trajectory
circular path + self-motion + linear path in the joint space (no stops)

Robotics 1 V4

From task to trajectory

TRAJECTORY

GEOMETRIC PATH parameterized by s: p = p(s))
-+ (e.g., s is the arc length) . p(s(t))
TIMING LAW describes the time evolution of s = s(t)

{of motion p4(t) (or qq(t))

of interaction F;(t)

B t TIME
I o

I >
0 / T
S
I @ >
PARAMETER S,

A \ p(s) = <§y8> y

PATH 1, (s)

example: TASK planner provides A, B
TRAJECTORY planner generates p(t)

Robotics 1 8

Trajectory planning
operative sequence

@D y—"| TASK planning
= Ssequence of pose points (“knots”) in Cartesian space -1
r—- interpolation in Cartesian space

r - Cartesian geometric path (position + orientation): p = p(s) -1

"L;')’, .5 @ —" path sampling and kinematic inversion
T g = sequence of “knots” in joint space —
C S . . S
© £ —" interpolation in joint space
\

= geometric path in joint space: g = q(41)

additional issues to be considered in the planning process

= obstacle avoidance
= on-line/off-line computational load
= sequence @ is more “dense” than @

Robotics 1 9

Example

q, |
’___B
A ~ I e \
> \\
/ p(s q
/ (s) \ ®
| I
% / -
C/'/ qs3
\\ J q3(4)
N - '4
_——— . - —__
— - =
A B c 7
Cartesian space joint space

Robotics 1 10

Path and timing law

= after choosing a path, the trajectory definition is completed by
the choice of a timing law
p=p(s) =s=s() (Cartesian space)
g=q(h) =i=x1) (joint space)
= if s(t) = t, path parameterization is the natural one given by time

= the timing law
= iS chosen based on task specifications (stop in a point, move at
constant velocity, and so on)

= Mmay consider optimality criteria (min transfer time, min energy,...)

= constraints are imposed by actuator capabilities (max torque, max
velocity,...) and/or by the task (e.g., max acceleration on payload)

note: on parameterized paths, a space-time decomposition takes place

e.g., in Cartesian p(t) = dp b(t) = dp d—;Lsz

space ds ®

Robotics 1 11

Trajectory classification

= Space of definition
= Cartesian, joint
= task type
= point-to-point (PTP), multiple points (knots), continuous,
concatenated
= path geometry
= rectilinear, polynomial, exponential, cycloid, ...
= timing law
= bang-bang in acceleration, trapezoidal in velocity, polynomial, ...
= coordinated or independent

= motion of all joints (or of all Cartesian components) starts and ends
at the same instants (say, t = 0 and t = T) = single timing law

or

= motions are timed independently (according to the requested
displacement and robot capabilities) — mostly only in the joint space

Robotics 1 12

Cartesian vs. joint trajectory planning

= planning in Cartesian space
= allows a more direct visualization of the generated path
= Obstacle avoidance, lack of “"wandering”

= planning in joint space
= does not need on-line kinematic inversion

= issues in kinematic inversion

= g and g (or higher-order derivatives) may also be needed

= Cartesian task specifications involve the geometric path,
but also bounds on the associated timing law

= for redundant robots, choice among o™ inverse solutions,
based on optimality criteria or additional auxiliary tasks

= Off-line planning in advance is not always feasible

= €.g., when environment interaction occurs or when sensor-
based motion is needed

Robotics 1 13

Relevant characteristics

= computational efficiency and memory space
= e.g., store only the coefficients of a polynomial function
= predictability and accuracy
= VS, “wandering” out of the knots
= VS, “overshoot” on final position
= flexibility
« allowing concatenation of primitive segments
= over-fly
= continuity
= in space and/or in time
= at least C*, but also up to jerk = third derivative in time

Robotics 1 14

video Jerk:"4002/s3

Robotics 1 15

Trajectory planning in joint space

q = q(t) intime or g = q(4) in space (then with A = A(t))
it is sufficient to work component-wise (g; in vector q)

an implicit definition of the trajectory, by solving a problem with
specified boundary conditions in a given class of functions

typical classes: polynomials (cubic, quintic,...), trigonometric
(cosine, sines, combined, ...), clothoids, ...

imposed conditions

= passage through points = interpolation

= initial, final, intermediate velocity (or geometric tangent for paths)
= initial, final acceleration (or geometric curvature)

= continuity of time-(or space-)derivative up to the k-th order: class C*

many of the following methods and remarks can be
directly applied also to Cartesian trajectory planning (and vice versa)!

Robotics 1 16

Cubic polynomial in space

q(0) = qo||q(1) = q1||q'(0) = vo||q’' (1) = V1| «— 4 conditions

Aq = q1-qo
A) =qo+Aq(ar’ +bA* +cA+ d
1) = o+ Aq(v) 1€ [01]
4 coefficients = “doubly normalized” polynomial gy (1)
qn(0) =0 < d=0 gy()=1<a+b+c=1

qn(0) = dqn/dA =0 =c = vo/Aq qn(1) = dqy/dAlj=1 =3a + 2b+c = v /Aq
special case: vy = v; = 0 (zero tangent)
gy(0) =0 < ¢c=0

gy(1)=1 < a+b=1 a=—2
<
gh(1)=0 < 3a+2b=0 b =

Robotics 1 17

Cubic polynomial in time

q(0) = qin||q(T) = qin|[q(0) = vin|[q(T) = Vfin| «— 4 conditions

AQ = qfin— Qin

q(t) = qi, + Aq(at® + bt? + c1 + d)
o N > T=t/T €[0,1]

-~

4 coefficients =—> “doubly normalized” polynomial gy ()
gn(0)=0< d=0 gy(D=1<a+b+c=1

4 Vinl Ve T
qn(0) = dqn/dt|i=0 = € = an(1) = dqy/dtle—y = 3a+2b+c =2

Aq Aq
special case: vy, = Vfi = 0 (rest-to-rest)
gy(0) =0 < ¢c=0

gv()=1 < a+b=1 — 9
<~
gu(D)=0 < 3a+2b=0 b

Robotics 1 18

A trigonometric alternative

boundary conditions
(rest-to-rest)

q(0) = qin||q(T) = q£in|| 9(0) =0 g(T) =0
1 —cosnt Aq = dfin— Qin
2 t=1t/T € [0,1]

q(t) = qin + Aq

doubly Aqm
normalized q(T) = —— SINTIT

normalized time tau

Ag T
max q(t) =q(0.5) = i
Robotics 1 T2

Quintic polynomial

q(r) =ar®> + bt +ct3 +dr’ +et+f 6 coefficients
T € [0,1]

allows to satisfy 6 conditions, for example (in normalized time 7 = t/T)

q(0) = qo ||q(1) = q1| [q'(0) = voT||q' (1) = v1T||q" (0) = a;T?|q"' (1) = a,T?

q(t) = (1 = 1)°(qo + (3q0 + voT)T + (aoT* + 6v,T + 12q,)7°/2)
+7°(q; + Bqy — v T)(A — 1) + (a,T* — 6v;T + 12q,)(1 — 7)%/2)

special case: v = v =ag=a; =0

q(t) = qo + Aq(67> — 157* + 1073) l Aq =g, —qq

Robotics 1 20

Higher-order polynomials

= a suitable solution class for satisfying symmetric boundary
conditions (in a PTP motion) that impose zero values on
higher-order derivatives
= the interpolating polynomial is always of odd degree

= the coefficients of such (doubly normalized) polynomial are always
integers, alternate in sign, sum up to unity, and are zero for all
terms up to the power = (degree-1)/2

= in all other cases (e.qg., for interpolating a large number N
of points), their use is not recommended
= there is a unique polynomial of degree N — 1 interpolating N points

= k-th degree polynomials have k — 1 maximum and minimum points
= oscillations arise out of the interpolation points (wandering)

Robotics 1 21

Interpolating N = 2 knots

with high-order polynomials and zero boundary conditions

interpolating polynomial of degree 9

interpolating polynomial of degree 29

oth N\ N 29th
degree . N degree
|4 derivatives .,
0.6 are zero 06 no
ol | overshoot
o 14 derivatives nor
" are zero! _
\ wandering
0 -°0> 0.2 0A4 0.6 0.8 1
2.5 T T = 4.51
| | normalized
(velocity - ' at midpoint
'l in time) “ ’
Robotics 1 22

Interpolating N knots g ... gy

with a unique polynomial of degree N — 1

N=2 = alne N = a polynomial of degree N — 1
q(1) = ag + a7 q(t) =
=q1+(q2 — q1)7

N =3 = a quadric

q(t) = ay + a;7 + a,t?

N s .

o = 1 I S T S SRR TRt S
(@ - 40T’ — (@ —q) | | befter solution: apatchof

. low-order polynomial tracts . i !
T (T, — 1) [N R R S A B

(92 —q1) — (@3 — q1) T, _20_'.___.-".___5, _____ N=11=>(dashed) _________ S S N .

Tm(Tm — 1) - : N : ' : : ”
L N0 polynomial: of degree. 10 .. ATl
1. €(01), q(t,) = q, w0 I PYROMIEL AL CEGHEE ATy
terpolates ... but wanders!!

aq

a2:

40. E : :.----.‘..--‘--..J...-..J: -

N =4 = acubic L

Q(T) — aO + a1T+Cl2T2 +a3r3 0.2 04 06 0.8 1 1.2 1.4 1.6 1.8 2

Robotics 1 23

4-3-4 polynomials

three phases (Lift off, Travel, Set down) in a pick-and-place operation in time

i .
12 q; (t) = 4th order polynomial
qr(t) = 3rd order polynomial
q1 qs(t) = 4th order polynomial
do - . _J
to t, t, tr 14 coefficients
initial depart approach final

boundary conditions

_ _ 6

q(to) =qo q(t1) =qtf) =q1 q(7) =q(t3) =q2 q(t) = qf}passages
. Ny B N 4 initial/final

q(to) = ¢ (tf) =0 G(to) = q(tf) =0 } velocitlwa:zcac/ellgfation

) =) Ge) =dh) =12 F o eron

to acceleration
Robotics 1 24

Interpolation using splines

= problem
interpolate N knots, with continuity up to the second derivative

= solution
spline: N — 1 cubic polynomials, concatenated so to pass through N knots,
and continuous up to the second derivative at the N — 2 internal knots

s 4(N — 1) coefficients

= 4(N — 1) — 2 conditions, or
= 2(N — 1) of passage (for each cubic, in the two knots at its ends)
= N — 2 of continuity for first derivative (at the internal knots)
= N — 2 of continuity for second derivative (at the internal knots)

= 2 free parameters are still left over
= can be used, e.g., to assign initial and final derivatives, v; and vy

= presented next in terms of time ¢, but similar in terms of space A4
= then: first derivative = velocity, second derivative = acceleration

Robotics 1 25

Building a cubic spline

q =0(t) = 10k(t),t € [ty + hi]} qN-1

UnN

10 \ e e N
(%1 M dn
CI1./\CI.2/’

t1(=0) ty Lk Ck+1 tn—1 tn
J

\

Y
time interval hy,

0, (T) = Apo + AT + AppT? + ag37° T=1t—ty € [0, h]
(k=1,-,N—1)

continuity conditions — O (hie) = Orc41.(0) k=1 -+ N—2
for velocity and acceleration 6, (h,) = 6,,,00)

Robotics 1 26

An efficient algorithm

1. if all velocities v, at internal knots were known, then each cubic in the spline
would be uniquely determined by

0, (0) = qi = axo hlzc hlgc (akz) _ (CIk+1 — 4k — thk) @
Hk(()) = Vi = Q1 th 3}7,]2c A3 Vk+1 — Vg
2. impose the continuity for accelerations (N — 2 conditions)

Or (hi) = 2ay; + 6axshy = 20412 = Or+1(0)
3. expressing the coefficients ay,, a3, a1, in terms of the still unknown knot
velocities (see step 1.) yields a linear system of equations that is always solvable

[/
v3 :
AChy, - hy 1) = | bChy, ", hn-1,q1 -, qn, V1, Vn)
UN-1 .
tri-diagonal matrix unknown known vector
always invertible C

to be substituted then back in @)
Robotics 1 27

/

Structure of A(h)

2(hy + h,) hy \
h3 2(hy, + h3) hy

hy_, 2(hy-_3 + hy_2) hy -3
hy-1 2(hy—2 + hy_1)

diagonally dominant matrix (for h; > 0)
[the same tridiagonal matrix for all joints]

Robotics 1 28

Structure of b(h, q, v, Vy)

3
/ (hi(q3 — q2) + h5(q2 — q1)) — hovy \
hi1h,
3
hohs

(h5(qs — q3) + h5(q3 — q2))

(ht—3(qn-1 — qn—2) + hi—2(Gn—2 — qn—3))

hn-shy—2

3
\h 7 (ht—2(qn — qn-1) + hiy—1(qn-1 — qn—2)) — hN—ZvN/
N—2NN—-1

Robotics 1 29

Properties of splines

= a spline (in space) is the solution with minimum curvature among all
interpolating functions having continuous second derivative

= for cyclic tasks (g1 = qy), it is preferable to simply impose continuity of

first and second derivatives (i.e., velocity and acceleration in time) at the
first/last knot as “squaring” conditions

= choosing v; = vy = v (for a given v) doesn’t guarantee in general the
continuity up to the second derivative (when in time, the acceleration)

= in this way, the first = last knot will be handled as all other internal knots
= a spline is uniquely determined from the set of data q4, -, gy,
hy,*, An-1, V1, VN
= in time, the total motion occurs in T =)., hy, =ty — ¢4

= the time intervals h, can be chosen so as to minimize T (linear objective
function) under (nonlinear) bounds on velocity and acceleration in [0, T']

= spline construction can be suitably modified when the second derivative
(in time, the acceleration) is also assigned at the initial and final knots

Robotics 1 30

A modification
handling assigned initial and final accelerations

= two more parameters are needed in order to impose also the
initial acceleration a; and final acceleration a

= two “fictitious knots” are inserted in the first and the last
original intervals, increasing the number of cubic polynomials

fromN—1toN+1

= in these two knots only continuity conditions on position,
velocity and acceleration are imposed

= two free parameters are left over (one in the first cubic and
the other in the last cubic), which are used to satisfy the
boundary conditions on acceleration

= depending on the (time) placement of the two additional knots,
the resulting spline changes ...

Robotics 1 31

A numerical example

= N =4 knots (o) = 3 cubic polynomials
= jointvaluesq; =0, q, =2m, g3 =1/2, qs, =7
« atty; =0,t, =2,t3=3,t, =5=>h; =2,hy, =1,h; =2
= boundary velocities v; = v, =0
= 2 added knots to impose accelerations at both ends (5 cubic polynomials)

= boundary accelerations a; = a, =0
= two placements: att; = 0.5and t; = 4.5 (x);oratt;’ =1.5andt, = 3.5 ()

pos vel acc
T 30 [
6 0 st 20t
D\ 10}]
_ 4} ',\ - _\ 2'_' 0 . ,
2 \ =0 3 0F 3
=1 \ E 2 -10} N
2 b - _0l
0%~ * * X | N 30
o 1 2 3 4 5 o 1 2 3 4 5 o 1 2 3 4 5
(s] (s] (s]
—— = placement (X) -------- = placement (*)

Robotics 1 32

