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Inversion of differential kinematics

= find the joint velocity vector that realizes a desired task/
end-effector velocity (“generalized” = linear and/or angular)

_ _ J square and

N v =J(q)g ) § =] (q)v

= problems

= Nnear a singularity of the Jacobian matrix (too high g)
» for redundant robots (no standard “inverse” of a rectangular matrix)

in these cases, more robust inversion methods are needed |
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Incremental solution

to inverse kinematics problems

= joint velocity inversion can be used also to solve on-line and
incrementally a “sequence” of inverse kinematics problems

= each problem differs by a small amount dr from previous one

21 (q)
r=fr(q) dr = 3 dq = Jr(q)dq
direct kinematics differential kinematics
(here with a square, analytic Jacobian)
current
q -1
| r+dr=f(q) = q=f "(r+dr)
” first, increment the then, solve the inverse
current next desired task variables kinematics problem
r — 1+ dr (possibly, with a numerical method
~ from the current configuration)
— 71
dq=J,"(@Qdr =% q— q+dq
first, solve the inverse then, increment the
differential kinematics problem original joint variables
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Behavior close to a singularity

g=]""(v| "t . |
wimce @ problems arise only when
o \ commanding joint motion by
<Q o inversion of a given Cartesian
e :
) AN motion task
o | s here, a linear Cartesian
| “** trajectory for a planar 2R robot
| \\ « = thereis a sudden increase of
N\ . the displacement/velocity of the
4 /1 & \\”t first joint near 6, = —m (end-
| =T T effector close to the origin),
\ despite the required Cartesian
) N 12 displacement is small
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Moving close to a singularity

in inverse (differential) kinematics problems

= on-line inversion of velocities or incremental inverse kinematics
= Singular configurations for a 6R robot with spherical wrist

wrist I

joint axes
4 & 6 aligned

elbow
arm stretched
(or folded)

shoulder
wrist center on
first joint axis
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Moving close to a singularity
6R KUKA Agile (with spherical wrist)

= wrist, shoulder and elbow singularities: feasible joint motions versus
end-effector (linear) paths crossing/coming close to critical points

video Ecole de Technologie Supérieure, CoR Lab, Montreal
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Moving close to a singularity

6R Universal Robots UR5 (no spherical wrist)

= Ssame ‘wrist’, shoulder, and elbow singularities, though with slightly
different configurations and full rotation of joints 4 & 6 in first case

video Ecole de Technologie Supérieure, CoR Lab, Montreal
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O Simulation results

N planar 2R robot in straight line Cartesian motion

g=]"1(q)v regular case

actual Cartesian path

2 .
j» < stroboscopic
sf NG 15f view
'l énd \ ] |
05}/ \ 05!
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-05 H -05}
1 1
1.5 1.5
-2 i r— " -2 A L " " )
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2 -15 -1 -0.5 0 0.5 1 15 2
x (m) m

a line from right to left, at « = 170° angle with x-axis,
executed at constant speed v = 0.6 m/sforT = 6 s
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Simulation results

planar 2R robot in straight line Cartesian motion

250 evolution ofljoim angles ‘ 150 evolution of ;f)int velociuesl
100 2
q1
- 50
path at §
E ]
—_ (o) 3 L
a=170 0
- q>
200, 1 2 3 4 5 6 1% 1 2 3 4 5 6
1(s) 1(s)
regular 075 i minimum slnguhvvcluc of the Ja'coblan ' {,‘:j}’ T <'w D{
case 1 ‘
error due
only to
distanceto ‘numerical
singularity by £ integration
the minimum (10719)
singular value
Omin (= 02) >0
of Jacobian J
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Simulation results

planar 2R robot in straight line Cartesian motion

7 = 71 I ingular
q _] (q)v close to s guiar case
actual Carntesian path
2 — 2, )
stroboscopic
sfo N0 15| view
1 1
05}/ 05
_|end start
% 0 e E 0
05| -05
1 -1t
1.5} 15
-2 i i — i -2 i i i i ;
2 15 -1 05 0 05 1 15 2 2 15 -1 05 0 05 1 15 2
x (m) m

a line from right to left, at « = 178° angle with x-axis,
executed at constant speed v = 0.6 m/sforT = 6 s
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Simulation results

planar 2R robot in straight line Cartesian motion

evolution of joint angles 600 evolution of joint velocities
T~
path at large
: eak
a=178° | | P
j— b | f R
of q1
w0 q>
150+ |
200 1 2 3 a 5 6 200 1 2 3 4 6
t(s) t(s)
minimum singular value of the Jacoblan m norm of Cartesian position error
0.8 . . . . T : :
181
16 \ still very
| t 1] small, but
close 1o Ll increased
singular & ot
“ o8t
case os| error_
0.2 04 (2 * 10 )
02F
00 1 2 4 5 6 C|0 1 2 3 4 6
t(s) t(s)
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Simulation results

planar 2R robot in straight line Cartesian motion

g =J"(q)w o clos_e to smgu!ar case )
with joint velocity saturation at V; = 300°/s

actual Carntesian path

2, .
e ~ stroboscopic
15} / 1 1.5+ view
1 ' 1
0.5}/ 0.5
_ | end start
% 0 e peo E 0
-05} -05
1 -1t
15} 15
-2 i — i -2 i H " M ;
2 15 -1 05 0 05 1 15 2 2 145 -1 05 0 05 1 15 2

x (m) m

a line from right to left, at « = 178° angle with x-axis,
executed at constant speed v = 0.6 m/sforT = 6 s
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Simulation results

planar 2R robot in straight line Cartesian motion

evolution of joint angles

o d1 |
path at . |

a=178 "
:,W\V

0 1 2 3 4 5 6
1(s)

q (deg)

minimum singular value of the Jacoblan

close to
singular .

E
2

case Ty
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evolution of joint velocities

I~ saturated
value

of g,

norm of Cartesian position error

J T actual
position
I error!!
E .03 (6 Cm)
0.2} | to be recovered
using an
M | error feedback
, ‘ : control action!
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Damped Least Squares (DLS) method

prove it!

A 1
. H — o 2 _ . _ 2 >

prove it! q — (/1111 +]T])_1]TU =]T(/11m +]]T)_1v =]DLS [

two equivalent expressions, but the second is more convenient in redundant robots!

= inversion of differential kinematics as unconstrained optimization problem

= function H = weighted sum of two objectives (norm of joint velocity and
error norm on achieved end-effector velocity) to be minimized

= [p.s Can be used for both cases: m = n (square) and m < n (redundant)

= 1 = 0 when “far enough” from singularities: /5, = JT(JJ7)™t =] or J*

= with A > 0, there is a (vector) error € (= v — Jq) in executing the desired

end-effector velocity v (check that e = A(A1,,, +J JT)~1v), but the joint
velocities are always reduced (“damped”)
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Simulation results

planar 2R robot in straight line Cartesian motion

a comparison of inverse and damped inverse Jacobian methods
even closer to singular case (removing joint velocity saturation)

- — 71 s —
q=]""(qQv q = JpLs(qQ)Vv
actual Cartesian path actual Carntesian path
2 T T 2 - -
1.5} 1.5}
11 1+
05} ‘ 05} ‘
. |end start - | end start
e Oi k=] < Oi -
-05H -05 \
-1 ] -1} ™~ Some
; position
1.5} 1 -15] error ...
-2 - - s -2 -
-2 -15 -1 -0.5 0 0.5 1 15 2 -2 -15 -1 -0.5
x (m)

a line from right to left, at « = 179.5° angle with x-axis,
executed at constant speed v = 0.6 m/sforT = 6 s
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Simulation results

planar 2R robot in straight line Cartesian motion

: _ ath at :
q =] 1(q)v apz 179.5° q =]DLS(q)v

2r 2
| o stroboscopic
| | views
1 1+
E 0 E 0
-05 -0.5
-1+ 1
1.5 -1.5
2 a5 4 05 o0 o.s\ 1 15 2 2 45 1 w05 0 05 1 15 2
here, a very fast a completely different inverse solution,
reconfiguration of around/after crossing the region
first joint ... close to the folded singularity
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Simulation results

planar 2R robot in straight line Cartesian motion

q =] (qv

evolution o 1] int angles

q (deg)

1(s)

evolution of joint velocities

2500,

extremely large = g,
peak velocity
of first joint!! §

g

1000

i 42

or — —

=500
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q (deg)
|

qdot (deg/s)

1
8 8 8 8 8§ 8 o B8 &8 8

@ og Lo

q = ]DLS(q)v
j q1
- q>

o
N
st
o
-]

smoother
joint motion
with limited

| joint velocities!
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Simulation results

planar 2R robot in straight line Cartesian motion

q=J]""(qQv

q = Jprs(@Q)v

35 x 10" norm of Gartesian position error 0.03 norm of Cartesian position error
°l | 0.025
L error (25 mm)
‘ when crossing o
¢ i increased the singularity, _
s | numerical later recovered by -
'nteeﬂgf'on a feedback action ../
05 4 (3 ) 10_8) . (v = v + erp .005 |
) with e, = pg — p(q))
oo 1 2 3 5 6 00 1 2 4 5 6
t(s) t(s)
0s minimum singular value of undamped and damped Jacoblan (squared) evolution of damping factor
minimum 045
singular o _
valge of 'damping factor
T T 2 ol A is chosen
nd A/ 3
]] d d +]] 2 025 non-zero
L . only close to
they differ only 5 °: singularity!
when damping '
factor is non-zero  *”
0
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Pseudoinverse method

a constrained optimization (minimum norm) problem

.H_l -
min —ZIIqII

1
mqinH=§||c'1||2 suchthat Jg =v |© 5—{ i €R": }

IJg — v|| is minimum

solution q=] v ‘ pseudoinverse of |

= if v € R(J), the differential constraint is satisfied (v is feasible)

= else, /g =] J*v = vt, where(vY)minimizes the error ||Jg — ||

orthogonal projection of v on R(J)
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Definition of the pseudoinverse

given J, is the unique matrix J# satisfying the four relationships
JIF] =] JFIIE ="
G5 =17 (*)) =J%

= explicit expressions for full rank cases
s ifp()=m=mn:J* =J71
< ifp() =m<n:j*=]7¢ )"
s if p(D=n<m: J =TT
= /¥ always exists and is computed in general numerically

using the SVD = Singular Value Decomposition of |
= e.g., with the MATLAB function pinv (which uses in turn svd)
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Numerical example

Jacobian of 2R robot with [; =1, =1at g, =0 (rank p(J) = 1)

feasible velocity direction

_ _251 _Sl R \
J = ( 2¢, ¢4 ) Ty ) Nyl
]# — l(—ZSl 2C1)
5\—S1

v

2
# _ S1 —S51C1 +« (0.8 04
JJ" = (—5101 ct ) )= (0.4 0.2) %
both symmetric ...

g = J*v is the minimum norm joint velocity vector that realizes exactly v+

- —1/8
+ atq, = n/6:forv = ( 8'5) (m/s], § = J#v = (0%15) [rad/s] = vt = J J#v = (\B//B) [m/s]

=atq, =n/2:] = (_02 _01) = J# = (:8‘2} 8), now the same v € R(J), q = (8?) = vt = v (no error!)
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General solution for m < n

ALL solutions of the inverse differential kinematics problem can be written as

G =)+ (1= 7)) § <

projection matrix in the null space N (J)

this is the solution of a slightly modified constrained optimization problem
("biased” toward the joint velocity &, chosen to avoid obstacles, joint limits, etc.)

1
RS SR | min H = =g — ¢]I?
min H = —=||g — &||? suchthatJg =v <&  4€S
q 2 Np—
S = { L }
IJg — v|| is minimum
verification of the actual task velocity that is being obtained

Vactwar =14 = J(*v + (1= J*1)€) = ] J*v + JU~T))¢ S = =

if v e R(J) = v =Jw forsome w € R"
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Geometric interpretation for m < n

a simple case withn =2, m=1 Ji=1[j1 J2] q1]=vEIR

at a given configuration d-
task equality
constraint
Jg=v g
. 2 “biasing” joint velocity
associated Ss o (in general, not a solution)
homogeneous ’ '3
equation R

Jg=0 . minimum norm

solution

J*v

solution with
S minimum

U1K

space of joint velocities \v‘(l —J*))é .~

S
S
<,

(at a configuration g) " e S~ ajslo;lalj)tsizirtlasle
orthogonal | .- N
projecgon of =" v\ lie on this line ...
¢on N(J) linear

R g 2.1 —
subspace ¥ U) =19 € R*:J¢ = 0}
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Velocity manipulability

= in a given configuration, evaluate how effective is the
transformation between joint and end-effector velocities

= how easily” can the end-effector be moved in various directions
of the task space

= equivalently, “how far” is the robot from a singular condition

= Wwe consider all end-effector velocities that can be
obtained by choosing joint velocity vectors of unit norm

. T < 1
g qg=1 ‘ V=

task velocity oU) —m
manipulability ellipsoid (]]T)_l

note: the “core” matrix of the ellipsoid
equation vT A"l v = 1 is the matrix A!
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(Hyper-)Spheres and Ellipsoids

whiteboard ...
. m=n=3 7
: rq3 - - Uz !
q _ J is a 3x3 (full rank) matrix singular values of |
r=1 m " a=15b=11,¢=0.75
r (% =]q /
| ()
r 2 \
7 / ’Uy
-1
1 UZ UZ vz az
c'z%+c‘1%+c‘z§=c‘ﬂ< 1 )c‘z=1 ’§+yz+zz=vT< b? ) v=1
a b C
1 c?

qTq — 1 ‘ vT (]]T)—lv —
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Manipulability ellipsoid

in velocity

planar 2R arm with unitary links

scale of
1 ellipsoid

0 1 2

length of principal (semi-)axes
singular values g; of J (in its SVD)

o, () =AU

in a singularity, the ellipsoid
loses a dimension
(for m = 2, it becomes a segment)

direction of principal axes
eigenvectors associated to A;

m

W=\/det(/]T)=1_[0i20

=1

Robotics 1

proportional to the volume of the

ellipsoid (for m = 2, to its area)
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Idet JI

Manipulability measure

planar 2R arm (with [; = [, = 1): Jdet(JJT) = y/det(]) - det(J7) = |det]| = [1=1 0

manipulability (L, = L =1)

manipulability as a function of radial distance L= L2 1)

singular values of J as a function of radial distance (L, = l_21)
2
3; 1.5}
5 a1(J)
35 .
| ® a,(J)
max at r = /2 | os

1 15
09}
0.8
0.7
14
06
='
05 =
b=l
04}
05}
03+
ol max at 8, = /2
0.1
. . :
0 05 1 15 2 25
theta, [rad]
2
1.5
1
0.5
E o
>
-0.5
-1
1.5
=2 " i I 1
-2 -1.5 -1 -0.5 0 05 1 1.5
. x [m]
Robotics 1

' 0 s : 1
3 62 0 0.2 0.4 06 0.8

L ) L ; 0 : L ' . ; '
1 12 14 16 18 2T 0 02 04 06 08 1 1.2 14 16 18 2 Y

distance along x-axis [m] distance along x-axis [m]

-

best posture for manipulation
(similar to a human arm!)

full isotropy (i.e., a circle)
is obtained in this case (
since it is always o, # o,

e S

. R
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Higher-order differential inversion

= inversion of motion from task to joint space can be performed
also at a higher differential level

= acceleration-level: given g, g
i =172 (@F-J-(@)q)

= jerk-level: given g, g, {

§ =) (@ F = (@i — 2 (@)q)
= (pseudo-)inverse of the Jacobian is always the leading term
= smoother joint motions are expected (at least, due to the
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