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Differential kinematics

= relations between motion (velocity) in joint space
and motion (linear/angular velocity) in task space
(e.g., Cartesian space)

= instantaneous velocity mappings can be obtained
through time differentiation of the direct kinematics
or in a geometric way, directly at the differential level
» different treatments arise for rotational quantities
= establish the relation between angular velocity and
= time derivative of a rotation matrix

=« time derivative of the angles in a minimal representation
of orientation N
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Angular velocity of a rigid body

“rigidity” constraint on distances among points:
||| = constant

— Up1
m) v, — vp; orthogonal to r;
1 Upy — Upp = W1 X173
2 Up3z — VUpp = W1 X173
Ups3
3 Up3z — Upy = W3 X 173

aka, “(fundamental)
kinematic equation” Upj = Up; + w X Tij= Upi + S(a)) Tij I “ f'ij= w X Tij l
of rigid bodies

= the angular velocity w is associated to the whole body (not to a point)
= if 3P, P,: vpy = vp, = 0 = pure rotation (circular motion of all P; € line P, P,)

= o = 0 = pure translation (all points have the same velocity v,)
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Linear and angular velocity
of the robot end-effector

w
wy = Z10; Wy = Zp-16y v
O—
</
w; = z;j_10; r=(p¢)
alternative definitions T R p
of the direct kinematics = \|
77 T
ZZ” of the end-effector 0" i 1

= ¥ and w are “vectors”, namely are elements of vector spaces
= they can be obtained as the sum of single contributions (in any order)
= such contributions will be given by the single (linear or angular) joint velocities

= on the other hand, ¢ (and qb) is not an element of a vector space

= a minimal representation of a sequence of two rotations is not obtained summing
the corresponding minimal representations (accordingly, for their time derivatives)

in general, w # ¢
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Finite and infinitesimal translations

= finite Ax, Ay, Az or infinitesimal dx, dy, dz translations
(linear displacements) always commute

Az
_> Z | i

/;
Ay same final
position
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Finite rotations do not commute

example
Z Z A
initial $x =90
orientation
y
X X
mathematical fact: w is
NOT an exact differential form 2 4 ¢, = 90°
VA (the integral of w over time
depends on the integration path!)
¢z =90° Yy
> Z >
y 7=
X ¥
X ¢x = 90° different final

, orientations!

y,
x/ note: finite rotations still commute
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w IS not an exact differential

whiteboard ...
we] B first final
" 20 T r [ @x(t) orientation
T=2s | L, j w(t)dt = j wy (L) |dt q
wyh E E 0 0 wz(t)
| | 90° R
i § = ZX
initial ) § — ( 0 ) 4
orientation @z | 90° §
i j ¢ (T)
— qb(t)dt—J —dt—j dp = ¢r — @,
8 T/2 T ¢ (0) o
x 190° an exact differential form R
: f,XZ
Wy T 90°
j w(t)dt = - = ( 0 )
R . > 0 90°
Wz [ 90° ...the same value ...final
_ but a different... orientation
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Infinitesimal rotations commute!

= infinitesimal rotations d¢y, d¢y, d¢, around x, y, z axes

1 0 0 1 0 0
Rx(¢x) =0 cospy —singy |:> Rx(d¢yx) = |0 1 —dopx
0 singy cospy | 0 doy 1 |
"cos¢y 0 singy 1 0 doy]
Ry(py)=| 0 1 0 | Rydpy)=| 0 1 0
—sing¢y 0 cos ¢y —d¢y 0 1 |
‘cos¢p, —sing, 0] 1 —d¢, O
Ry(¢7) = |sing; cos¢p; 0| B2 Rz(dpz) =|dp, 1 0
L0 0 1. L0 0 1.
1 —dp, dey second- and
= R(d¢) = R(dpx, dpy,doz) = | do; 1 —dox| < (igr]li'rr]‘ijt'eosriﬂfgl)
T _d¢Y d¢X 1 terms

inany order =] + S(d¢)
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Time derivative of a rotation matrix

= let R = R(t) be a rotation matrix, given as a function of time
= since I = R(t)R'(t), taking the time derivative of both sides yields

0 =d(R(E)RT(t))/dt = (dR(t)/dt)RT (t) + R(t)(dRT (t)/dt)
= (dR(t)/dOR™ () + ((dR(D)/dr) R™())"
thus (dR(t)/dt) R (t) = S(t) is a skew-symmetric matrix
= let p(t) = R(t)p’ a vector (with constant norm) rotated over time
= comparing
p(t) = (dR()/dt)p" = S(OR®)p" = S()p(t)

p(t) = w(®) x p(t) = S(w(®))p(®) r p
we get S = S(w) :&'p

R=S(w)R| @ |S(w)=RR'
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Example
Time derivative of an elementary rotation matrix

0
Ry(o(t)) = [ cos ¢(t) — sin ¢(t)‘
sing(t) cosp(t)

0 _
Ry(P)RE(P) = ¢ [O — sm¢ — COS qb‘ [ cos qb smqb

0 cos¢p —sing —sin¢g cos @l
0 O 0.' b
=10 0 —¢| =S(w) - W= Wy = ()]
0 ¢ 0| L0

more in general, for the axis/angle rotation matrix

Tx
R(r,0(t)) = R(,0)RT(r,0) = S(w) ‘ w=w,=0r=20 Iry“

Tz
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Time derivative of RPY angles and w

Rrpy(ax, By, Yz) = Rzyrx'(Vz, By, ax) = Rz(V)Ry (B)Ryr ()

Z A
the three
contributions
vZ, LY, aX" v 4
to w are ,3 y
simply summed | —>
as vectors y
B
X
x' a
xll
similar treatment for the
Robotics 1

Trpy (B, V)
cBcy —sy 0 |d
w=|cBsy ¥ 0 [ﬂ]
—-sp 0 1 |ly
X" Y' Z

I

1st colin 2nd col in
Rz;(Y)Ry (B) Rz(y)

det Trpy (B,¥) = cosf =0
for f =+m/2
(singularity of the
RPY representation)
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Robot Jacobian matrices

= analytic Jacobian (obtained by time differentiation)

= (5)=r@ = (D) =LLd =@

= geometric or basic Jacobian (no derivatives)
v\ _ (@) . _ :
(o) = Uy Ja =13

= in both cases, the Jacobian matrix depends on the
(current) configuration of the robot
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direct kinematics

[ p, =1lycosq + 1, cos(qr + q;)
r < py=Ilysing, + I;sin(q; + q;)

LT S BESE BESE BESE BESE EE EEE B S e e . ..

Px = —l151G; — 13512(41 + G2)
. ' .1 ! 2 12. ! . ? —lisy — 3512 —13sq,
p3f — ll €141 T lzclz((h + CIZ) ‘ ]T(Q) — licqy + 15¢q9 lrcq

¢ = w, =41+ qa
given 7, this is a 3 X 2 matrix

here, all rotations occur around the same j i
fixed axis z (normal to the plane of motion) r = ]r (q)q
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Analytic Jacobian of polar (RRP) robot

P
‘ direct kinematics (here, r = p)
P
| . )
Px = q3C2¢1
. < \ Py = q3C281 ¢ fr(q)
ds Pz = di + 4352
- 2N
p, e G e taking the derivative w.r.t. time t ...
X

—({3C251 —(q3S2C1 (04
p:

0 q3Cz S2

\ . -7

q3C2C1  —(q3S287 C251>5I=]r(Q)q

df-(q) ... requires doing only partial derivatives

dq w.r.t. joint variables g4 ...

Robotics 1
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Geometric Jacobian

always a 6 X n matrix

J .
endeeffector — ypy _ (L@, _ (Ju(@ - Jin(@ (‘?)
( L ) (Ll L ) ;

- v f— —
mst::lzacri\tious (wE)— Ja@ /T T Un@ - Jan(@)

Vg = ]Ll(q)ql‘ +]Ln(q)éIn Wp = ]Al(Q)ql‘ +]An(q)Qn

contribution to the linear contribution to the angular
e-e velocity due to g4 e-e velocity due to g4
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Contribution of a prismatic joint

note: joints beyond the i-th one are considered to be “frozen”,

so that the distal part of the robot is a single rigid body  J.:(q)4; = z;_,d;

prismatic
i-th joint

Jui(@)aq; | zi_1d;

joint i Jai(q)q; 0

RF,
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why not use the

minimum distance rev0|ute
vector ﬁ?

I-th joint

. .‘ t e . .
JoItt J1i(q)q; (Zi—1>< Pi—1,E)9i
RF,

]Ai(CI)Qi Zi—19i
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Expression of geometric Jacobian

(Fos) _) (" g
()-)0 - (-G~ )(?)

prismatic revolute this can be also
i-th joint i-th joint computed as
0po.£(q)
J1i(q) Zi—1q Zi—1X Pi-1,E = BE
qi
]Ai (q) 0 Zi_1

0
f<0> all vectors should be

) —1
Zi—1 = ORl(Ch)'“l Ri—1(qi—1)" Zi—1/ 1/ expressed in the same

reference frame
Pi-1, = Po,e(d1, "> 9n) — Po,i-1(q1,***» Qi-1) (here, the base frame RF,)

\ J \ J

| |
complete kinematics partial kinematics
for e-e position for O;_, position
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Geometric Jacobian of planar 2R arm Qi

Denavit-Hartenberg table

joint | «a; | d; a; 0,

1 0 0 Ly q4
2 0 0 lz q-

1 —51 0 l161

04 | St & 0 lis1 ¥ pos
1=
_ (%0 XPoe Z1 XDP1iE 0 0 1 0
0 12 —S12 0 licqg +1zcq0
0 S12 €12 0 lis;+ 15851, € PoE
70 — 74 = A = !
0=~ <(1)> ° 0 0 1 0
0 0 0 1
all computations can be made numerically,
evaluating first the direct kinematics terms! P1,e = Po,e — Po,1
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Geometric Jacobian of planar 2R arm

X2 __ (20 XPoEe Z1 XDP1E
J(q) = ( Zo 7y )

—l151 — 13512 —I3s12
licy + 15¢q2 l5¢12

v, =0

w, =0 -

wy, =0 | \ j
1 1

note: the Jacobian is here a 6 X 2 matrix,

thus its maximum rank is 2
1 compare rows 1, 2, and 6

with the analytic
Jacobian in slide #13!

at most 2 components of the linear/angular
end-effector velocity can be independently assigned
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Transformations of Jacobian matrix

RF, b) we may choose

'}/ i E = 0;(q)
the one ]ust
computed ..
= +w Xr
°In(@) g VE = n nE
R ( “’> " = v, +S(rg,) w

) U@ d = Ple@)

RF§; ()= 2 )0 ()
:(g B‘;O)(I S(men)) «

0 I
a) we may choose ~ — _
RF5 = RF;(q) this part is never singular!
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Example: Dexter robot

= 8R robot manipulator with transmissions by

pulleys and steel cables (joints 3 to 8)

Robotics 1

lightweight: only 15 kg in motion

6 motors located inside the second link

incremental encoders (homing)

redundancy degree for e-e pose task: n — m = 2
compliant in the interaction with environment

.
'
il |
} !
(PR i
l' & ';1 |
? ‘
|
A
{
5
3 /
d

H a (mm) | d (mm) | a (rad) ] range 6 (deg) |

| i
0 0 0 —7/2 | [[12.56, 179.89]
1 144 450 —7/2 [-83, 84]
2 0 0 /2 [7, 173]
3 100 350 /2 (65, 295]
4 0 0 —7/2 [174, -3]
5 24 250 —7/2 [57, 265]
6 0 0 —7/2 [-129.99, -45]
7 100 0 ™ [-55.05, 30]
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= geometric Jacobian °/4(q) is very complex
= “mid-frame” Jacobian #/,(q) is relatively simple!

dysy83+dssscas) —a 03¢ 82 —dycgcyca—dgecg

—Qg83638) +G3C3€) +a 10102 —d €182

—dgcgca8)—a183¢0)85—d 830 00 —dg330) —dy3)c5+age28,

4G
—C3c281—383C]1
—223]
i —23C28;+€3C)
ay8s+dssssn dses 0o 0
—@g8484 —ageg 00
—a cg—dgCg8y —agCy dgsg —ag 0 0
6 rOWS’ —C382 83 0 0 —=4
8 columns .. 0 10 e
—8383 —C3 o 1 0

—as24—dscscy —azezcace+dsssecey

—dgegsgtagey dpsgegsy—azs584¢Cg

dgsg —agegs+dz 586
—C48; —C4C585+24Cg
—8485 — 8405806 —C4C;

—-C5 2586

Robotics 1
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R2w R= S(w)R for each (unit) column r; of R (a frame): 7, = w X r;

S(w) = RRT
[ in body frame (@ = RTw): R = RS(Q), S(Q) = RTR = RTS(w)R ]
p2w = Wg T WG TWe, = a1¢1 + az ()P, + az(@1, )3
=T(¢) ¢ T_ ! — !

(moving) axes of definition for the

sequence of rotations ¢;, i = 1,2,3

special case: if the task vector r is

r = (Z) - ]r(CI) — ((I) T—1O(¢))](Q) “ ](Q) — ((I) T(()¢))JT(Q)

=3 T(¢) has always < singularity of the specific minimal
a singularity representation of orientation

Robotics 1
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Acceleration relations (and beyond...) (2{?

Higher-order differential kinematics

= differential relations between motion in the joint space and motion in
the task space can be established at the second order, third order, ...

= the analytic Jacobian always “weights” the highest-order derivative

!

velocity T = ]r(CI) q matrix function N, (q, q)
acceleration ¥ ={J(q)|d + J-(q)q matrix function N3(q, q, §)
jerk ¥ = - (@|d + 2/ (@4 + ] (@9
snap r=J-(@Qq +

= the same holds true also for the geometric Jacobian J(q)
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Primer on linear algebra

given a matrix J: m X n (m rows, n columns)
rank p(J) = max # of rows or columns that are linearly independent
= p(J) < min(m,n) < if equality holds, J has full rank
= if m = n and J has full rank, J is nonsingular and the inverse J~1 exists
= p(J) = dimension of the largest nonsingular square submatrix of J

range space R(J) = subspace of all linear combinations of the columns of |

R(J)={veR™:3¢ € R",v =]} <«— also called image of |
« dim(R()) = p())
null space V' (J) = subspace of all vectors that are zeroed by matrix J
N(J)={¢eR" JE=0€e R"} <—— also called kernel of |
» dim(WV(J)) =n—p())

R(DDABNJDH =R™and RJT) @ N(J) = R" (direct sum of subspaces)

= any elementv eV =V, +V, can be writtenasv =v; +v,, v €V;,v, EV,
= ... in a unique way if and only if V; N V, = {0} (a ‘direct’ sum, not just a sum!)
Robotics 1
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Robot Jacobian

decomposition in linear subspaces and duality

space of ﬁ space Of-
joint velocities ] task (Cal_'t_e5|an)
m /> velocities

dual spaces
saoeds |enp

RUDH G N(J) =R" RSN =R"™

task (Cartesian)

T
&ly forces

(in a given configuration q)
Robotics 1 27
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Mobility analysis in the task space

= p(N =pJ@), R =RUJ@), NJ") =N(J"(q)), etc. are locally

defined, i.e., they depend on the current configuration q

= R(J(q)) is the subspace of all “generalized” velocities (with linear
and/or angular components) that can be instantaneously realized by the
robot end-effector when varying the joint velocities g at the current g

= if p(J(q)) = m at q (J(q) has max rank, with m < n), the end-effector
can be moved in any direction of the task space R™

« if p(J(q)) < m, there are directions in R™ in which the end-effector
cannot move (at least, not instantaneously!)

= these directions € NV (JT(q)), the complement of R(J(g)) to task space R™,
which is of dimension m — p(J(q))
= if M(J(q)) # {0}, there are non-zero joint velocities g that produce
zero end-effector velocity (“self motions”)

= this happens always for m < n, i.e., when the robot is redundant for the task
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Mobility analysis for a planar 3R robot \f

whiteboard ...

18

L=L=0b=1 n=3, m=2
WS, = {p € R?:||p|| <3} c R?
WS, ={p € R*|lpll <1} c R?

C1 + Cy1p + Cqyp3

in R? 3 p > P = (51 + 51, + 5123) in R3
7
\ L (—51 — S12 —S123  TS12 7 S123 —5123) . — I ( ),/
VEP T\ +eptcas  ciptcas 123 9=J(a)q
case 1) case 2)
q=0,m/2,n/2) q = (n/2,0,m)
(-1 -1 0 _(-1 0 1
]—(o 1) ]_(o 0 0)

7 7

= run the MATLAB code subspaces_3Rplanar.m available in the course material
Robotics 1 29



Mobility analysis for a planar 3R robot &

whiteboard ...

q=0,m/2,m/2) ]= (_01 j _01) JT = (—1 -1
case 1) . 0
> p(J)=2=m p(J") =p() =2

1 .
R =son (3 [2 =5 2 p=sun | o[} 2Ot

1
X $
RJ) B N(J") =R?
( 4 RUHSN(J) =R’
7 7 -+
1 .
R(J") —span{[l] l ]} dimR(J") = 2 NJH =0
0 =p(J) (=m)
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Mobility analysis for a planar 3R robot %e}

whiteboard ...
-1 0
— _(-1 0 1 _
7= om 1=(0 o o ]T_<(1) 8)
case 2) ,0(])=1<m (]T)=,0(/)=1
R({) = span { [1] } dim NV (J) = 2
0 N(J) = span ORCS
7 dimR() =1=p() =n-—p
T — ™2
forbidden! | ) R() @N(/ ) =R
RUHBAN() = R3
r *
— P dim R =1 _ 01) dm N (T = 1
R(UT) = span H (1) } (/_) 0 N(T) = span { [1] } - m(l_)p(])

Robotics 1 2



Kinematic singularities

configurations where the Jacobian loses rank
< loss of instantaneous mobility of the robot end-effector

for m = n (< 6), they correspond to Cartesian poses at which the number
of solutions of the inverse kinematics problem differs from the generic case

“in” a singular configuration, we cannot find any joint velocity that realizes
a desired end-effector velocity in some directions of the task space

“close” to a singularity, large joint velocities may be needed to realize even
a small velocity of the end-effector in some directions of the task space

finding and analyzing in advance the mobility of a robot helps in singularity
avoidance during trajectory planning and motion control
= when m = n: find the configurations g such that det J(g) = 0

= when m < n: find the configurations g such that all m X m minors of J(q) are
singular (or, equivalently, such that det(J(q)/" (¢)) = 0)

finding all singular configurations of a robot with a large number of joints,
or the actual “distance” from a singularity, is a complex computational task
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: P direct kinematics

Px = licg + 1zc12
py = 1151 + [2512

X

> analytic Jacobian
_ . (—lhsi—lsy — l2512) . :
det J(q) = 11,5, p = ( e+ Lo, Ly, )4 =J(q)q

singularities: robot arm is stretched (g, = 0) or folded (g, = m)

singular configurations correspond here to Cartesian points that are on the
boundary of the primary workspace (or at the center of WS, if [{ = [,)

iIn many cases (as here), singularities separate regions of the configuration
space with distinct inverse kinematic solutions (e.g., elbow “up” or “"down”)
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Singularities of polar (RRP) robot

direct kinematics
Px = 43201
Py = (q3C251
Pz = di + q3s;
analytic Jacobian

7y —(351C2 —(q3C152 (1(2
p, A q 1 p =\ q3C1C2  —(q3S1S2 S51C2 |q
5 0 q3C2 52
det J(q) = q3¢; = J(Q)q
= singularities
s E-E is along the z axis (q, = xm/2): simple singularity = rank p(J) = 2
= third link is fully retracted (g3 = 0): double singularity = rank p(J) drops to 1

= all singular configurations correspond here to Cartesian points internal to

the workspace (supposing for the prismatic joint)
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Singularities of robots with spherical wrist Qi

n = 6, last three joints are revolute and their axes intersect at a point

without loss of generality, we set O, = W = center of spherical wrist
(i.e., choose dg = 0 in DH table) and obtain for the geometric Jacobian

=0 )

since det J(qq, '+, qs) = detJ;; - detJ,,, there is a decoupling property
= det /;1(q4,95,q3) = 0 provides the arm singularities
s det /,,(q4,qs) = 0 provides the wrist singularities

being in the geometric Jacobian J,, = (z3 z, zc), wrist singularities
correspond to when z3, z, and zc become linearly dependent vectors

— when either gz = 0 or q; = £ /2 (see Euler angles singularities!)

inversion of J(q) is simpler (block triangular structure)

= the determinant of /(gq) will never depend on g4: why?
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