KUKA LWR-IV

■ 7R manipulator: spherical shoulder (3R), elbow joint (1R), spherical wrist (3R)

KUKA LWR-IV in motion

side view from observer in V

videos at DIAG Robotics Lab

VREP video

KUKA LWR-IV

determine

- frames and table of D-H parameters
 - be consistent with positive rotations indicated by KUKA
 - only the two kinematic lengths L and M should be needed
- homogeneous transformation matrices
- direct kinematics of the center of wrist p_W in symbolic form
- numerically, in the configuration $q = (0, \pi/2, \pi/2, -\pi/2, 0, \pi/2, 0)$ [rad] the position ${}^{0}p_{d}$ in frame 0 of a tool point P_{d} whose coordinates in frame 7 are given by ${}^{7}p_{d} = (0, 0.05, 0.1)$ [m]

Assignment of D-H frames

Table of D-H parameters

i	α_{i}	d _i	a _i	θ_{i}
1	π/2	0	0	$q_1 = 0$
2	−π / 2	0	0	$q_2 = 0$
3	−π / 2	L	0	$q_3 = 0$
4	π/2	0	0	q ₄ =0
5	π/2	M	0	q ₅ =0
6	−π / 2	0	0	q ₆ =0
7	0	0	0	$q_7 = 0$

in the shown configuration

with

$$d_3 = L = 0.40, d_5 = M = 0.39$$
 [m]

D-H homogeneous matrices

output from Matlab (symbolic) program

```
A1 =
[\cos(q1), 0, \sin(q1), 0]
 sin(q1), 0, -cos(q1), 0]
       0, 1,
                    0, 0]
       0, 0,
                    0, 1]
A2 =
[\cos(q^2), 0, -\sin(q^2), 0]
 sin(q2), 0, cos(q2), 0]
       0, -1,
                     0, 0]
       0, 0,
                     0, 1]
A3 =
[\cos(q3), 0, -\sin(q3), 0]
[\sin(q3), 0, \cos(q3), 0]
       0, -1,
                     0, L]
       0, 0,
                     0, 11
A4 =
[\cos(q4), 0, \sin(q4), 0]
[\sin(q4), 0, -\cos(q4), 0]
       0, 1,
                    0, 0]
       0, 0,
                    0, 1]
```

```
A5 =
[\cos(q5), 0, \sin(q5), 0]
 sin(q5), 0, -cos(q5), 0]
       0, 1,
                    0, M1
       0, 0,
                    0, 1]
A6 =
[\cos(q6), 0, -\sin(q6), 0]
  sin(q6), 0, cos(q6), 0]
       0, -1,
                     0, 01
A7 =
[\cos(q7), -\sin(q7), 0, 0]
 sin(q7), cos(q7), 0, 0]
       0,
                 0, 1, 0]
                 0, 0, 1]
```

Direct kinematics of the wrist center

output from Matlab (symbolic) program

$$p_{W,hom} = A_1(q_1)A_2(q_2)A_3(q_3)A_4(q_4)A_5(q_5)A_6(q_6)A_7(q_7) \cdot [0\ 0\ 0\ 1]^T$$
 these can be replaced (by inspection) with $[0\ 0\ M\ 1]^T$
$$= A_1(q_1)A_2(q_2)A_3(q_3)A_4(q_4) \cdot [0\ 0\ M\ 1]^T$$
 the last three (spherical) joints do not move W faster (symbolic) recursive position transformations (matrix - vector products, in homogenous coordinates)

Tool position evaluation

output from Matlab (numerical) program

• in the given configuration $q = (0, \pi/2, \pi/2, -\pi/2, 0, \pi/2, 0)$ [rad] for the tool point P_d of coordinates (in frame 7) $^7p_d = (0, 0.05, 0.1)$ [m]

