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Position and orientation

right-handed orthogonal RFp 25 rigid body
Reference Frames -
= position: APAB\ (vector € R3)

A B
RF, |%4 Cartesian coordinates of vector AB
Pan T expressed in RF,
1 Tp = orientation:
> orthonormal 3 X 3 matrix
A Ya (RT = R-!'= RTR = I), with det = +1
T A

" x, Y4 24 (g yYp 2p) are axis vectors (of unitary norm) of frame RF, (RF'p)

= components in 4Rz are the direction cosines of the axes of RE; with

respect to (w.r.t.) RF,
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Position of a rigid body

= for position representation, use of other coordinates than the
Cartesian ones is possible, e.g., cylindrical or spherical

= direct transformation from cylindrical to Cartesian te
X =rcos6 _ _ p .1
_ Ty is always well defined o
y =Tsin (with 7 = 0 or r 2 0) h

Z=nh %y
0

= jnverse transformation from Cartesian to cylindrical
assuming +

(r =0 only)\l

r="1x%+ y?

x*+y?=r? with a singularity

= 0 = atan2{y, x} forx =y = 0

X=tan9
X h=z \

four-quadrant arc tangent
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atan2 function

= arctangent with output values "“in the four quadrants”

= two input arguments
= takes values in [—m, +7 |

= undefined only for (0, 0)
= uses the sign of both arguments to define the output quadrant

= based on arctan function with output values in |- /2, +1 /2]
= available in main languages (C++, Matlab, ...)

farct.an(%) x>0
m + arctan(¥) y>0,2<0
atand(y, ) = ¢ —m + arctan(¥) y < 0,2 <0
5 y > 0,2 =0
—g y<0,2=0
| undefined y=0,r=0

Robotics 1



29
around
Z-axXis

-90° e
arouqd B
T-axis

Robotics 1




Rotation matrix

— — direction cosine of

T T zTA'yp Ta'2p zZpW.rt. x4
ARp = |Y4'Ts Ya'Ys Ya'2p %525 = %lll1z5 ]| cos B
= cosf
o_rthonormal, zilry ziys  z4lzp
with det = +1 L — algebraic structure
, of a group SO(3):
chain rule property neutral element = I,
kD iR kR inverse element = RT
 JR/'R;= 'R,
orientation of RF; orientation of RF;
w.rt. RE; w.rt. RE;,

orientation of RF;
w.r.t. RF;

NOTE: in general, the product of rotation matrices does not commute! |
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Change of coordinates

1 0 0OF (O 1 0 (0 0o 1T

! ! l

— Opa: OwO + Opy OyO + Opz OzO

— 1pm Oxl T 1py Oyl - 1pz Ozl

p,
1 py
D,

I Op; O
= | 1 Y1 2
1

=R, 'p l
the rotation matrix "R, (i.e., the orientation

L of RF| w.rt. RF,) represents also the change
of coordinates of a vector from RF; to RFj
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Change of coordinates

Y o
0R1= 1/\/8 _Z/\/é 1/\/6
Vg O g
N
OP=OR11P=<O>
0
Ipll=|°r|=|"p|=+3

... and where is RF;?
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A

RF,

" X, is aligned with p = 0P

= z,is orthogonal to y; (2} y, = 0)
and is positive on x; (2} x; = 1/v/2)

= vy, completes a right-handed frame



Orientation of frames in a plane

(elementary rotation around z-axis)

p = OP x=0A-xA=ucosf —vsinb
y=0B+ By =usinf + v cos 6
RF, Z=W
.................... 7 or... C
[ ' RF Oxc oyc Oz, p
O i > A— J
X cosf8 —sinf O0]ru u
OP%[}’]= sinf cosf O [v]=RZ(9)[v]
Z 0 0 11tw w
similarly: R,(=6) = R, (6)
1] 0 0 cosO@ 0 sinf@ ]
R,(0) =0 cos® —sinf| R,(0)= 0 1 0
L0 sin@ cos@ | . —sinf 0 cos@ .
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x = ||v|| cosa
y = ||v]| sina

x' = ||v|| cos (a + 8) = ||v||(cos @ cos 8 — sin a sin §)
> = xcost —ysin 6
y' = ||v|| sin (a + 8) = ||v||(sina cos 8 + cos a sin O)
= xsin 8 + y cosf
zZ' =z
or...
'x, _C(.)SH —sinf O0]px X1  came as
y | =1|sinf cos8 O||y|=R,(0)|Yy beforel
L 7! L 0 0 11tz Z
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Equivalent interpretations
of a rotation matrix

the same rotation matrix (e.g., R,(8)) may represent

the orientation of a rigid the change of coordinates the rotation
body with respect to a from RF . to RF, operator on vectors
reference frame RF e.g.,'p =R,(0)‘p eg, v =R,(0)v

e.g. [°x.°y.°z.] = R,(6) |
\ 4

N the rotation matrix °R . is an operator

“|  superposing frame RF, to frame RF
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Composition of rotations

'R, brings RF,on RF,
OR, brings RF,on RF;

’R3 brings RF,on RF,

P23—0

P12=0
\RFl

Rk

RF,

a comment on computational complexity

°p = (°R1'R;%R3)3p = "R33p |<—
%p = R, (*R, (°R3%p)) I<—

'—,—'Zp

le

\

4
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63 products
42 summations

27 products
18 summations
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Axis/angle representation

TZORF 0P =p: polp DATA
r, 0/ = axis r (unit vector in R3, ||r|| = 1)
. };‘ e = angle @, positive counterclo;kwise
(as seen from an “observer” oriented
like r with the

to her/his feet)

/y N parametrized by
Yo DIRECT PROBLEM  the given data!
/
. ] i v
find a rotation matrix R(6,r)
o RF is the result of rotating SUChOthaOt 0
RF, by an angle 6 around R(O,r) = ["x1"y, "z4]
the unit vector r Op = R (Q ‘l‘) 1p

X1 v =R(6,r) v
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sequence of three rotations that
superpose frame RF to frame RF;

Robotics 1

R(6,1) = CR,(6) C" |

sequence of three rotations
(one of which is elementary)

C=|n § r

after the first rotation

the z-axis coincides with r
i

n and s are orthogonal
unit vectors such that
nNXs=r
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Inner and outer products

whiteboard...

T

= (inner) row by column products between two 3% 3 (orthonormal) matrices
CTC = S

1 0 O
n s r 0O 1 O
rT 0 0 1

= dyadic expansion of a nXn generic matrix

n
e = [0 w1 O]T, i=1,..,n = A= Z al-jel-ejT (= 1A IT)
ij=1
= product of three nXn matrices using dyadic form

n
= BABT = z Clijbibf

ij=1

B — b1 bz bn—l bn

= (outer) column by row products between two 3 X3 matrices

A H R E

=nn’ + ssT+rr’=
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Skew-symmetric matrices

whiteboard...

= properties of a skew-symmetric matrix
= a square matrix S is skew-symmetric iff ST = —S
& s;j = —sj; = s; = 0 (zeros on the diagonal)

= any square matrix A can be decomposed into its symmetric and skew-symmetric parts
A+AT  A-AT

A= 2 + 2 = Asymm +Askew
= in quadratic forms the skew-symmetric part vanishes (only the symmetric part matters)
JA+AT
xTAx =2[xTAx + (xTAx)T] =2 [xTAx + xTATx] = T S X = X" Agymm X

= canonical form of a 3 x 3 skew-symmetric matrix also Caljjecl_ v;s map v

X 0 -z y 0 -v, vy / Vy

vzly] = S(v)z[z 0 —x] S=1v, 0 -v| = vz[vy]
VA -y x 0 —Uy Uy 0

= expression of the vector product between two vectors € R® [ i E]
arrus rule for

n, n
Ny Sx Tx MySz — SyNz 1« determinant of | > Yy
n= ny,S: Sy = r = T'y = nxs=1\|MN;S — SN, S(n)s
n, S, 1 n Sy any

V1 XV, =SV, = — v, X V= — S(W)v; = ST (v,)v,
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Axis/angle: Direct problem

solution
RO, r) =C R,(0) CTI

cO —s6 O
sf CH

=rr’ + (nn” + ssT) cO + (snT — nsT) s6

R(O,1) = [n S r‘

taking into account

CCT =nn? +ssT +rrf =1

0 -n n
snT —nsT=|n, 0 -—-n|l=S
-y T 0

dﬁ,ﬁ’i[“;igr;'y! —> RO, r)=rr"+ { —1rr") cO + S(r) s6 I
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Final expression of R(6, r)

developing computations...
R(O,r) =

- 12(1 —cos @) + cos 8 Tey(1 —cosf) —1,sin@ 1,1, (1—cosf) + 1, sin 0]

r,1y(1 —cos@) +1,sin6 1r;(1—cosB)+cosf 1,71,(1—cosB)—r,.sinb

71z (1 —cosB) —r,sin6  71,1,(1 —cosb) + 1y sind r2(1 — cos @) + cos b _

sum of the diagonal
elements of a matrix

note that /
trace R(6,r) =1+ 2 cosb

R(O,1r) = R(—6,—r) = RT(-06,1)

Robotics 1 18



Axis/angle: a simple example

RO,r)=rr"+ (U —1r")cH + S(r) sO |

0
r=|0]|=z
|1
0 0 O] [1 0 O] 0 —1 O]
R@,r)=]|0 0 O|+|0 1 O|cE+([1 0 0|s6O
0 0 11 10 0 O. 0 0 O
c0 —sO O]
=\|s8 c6 O0|=R,(0)
L0 0 1
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Properties of R(6, 1)

. R(6,r)r = r (r is the invariant axis in this rotation)

. when 71 is one of the coordinate axes, R boils down to one
of the known elementary rotation matrices

. (6,1r) = R is not an injective map: R(0,r) = R(—6,—1)
. det R = +1 = []; 1; (eigenvalues)

. trace R = tracerr’ +trace (I —rrT)cl =1+ 2c6 =), 1,
=~
1 . = ).1 — 1 identities in green hold for any matrix!

4&5=>AZ+A3=2C9=> AZ_ZCHA_I_:[:O
= /12,3:CHi\/CZH—lzcgiisgzeiiH

all eigenvalues A have unitary / [
module (<= R orthonormal) k&’jl

Robotics 1
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Axis/angle: Inverse problem

GIVEN a rotation matrix R = {R;;},
FIND a unit vector r and an angle 6 such that

R=rr"+({—-rr")cosf + S(r)sinf = R(O,r)

note first that trace R = R{; + R,» + Ry;3 =1+ 2cos 8 ; so, one solve

Ri1 + Ry; + Rz — 1
2

6 = arcos

this formula provides only values in [0, ] (thus, never negative angles 9)

loss of humerical accuracy for 8 — 0 (sensitivity of cos 0 is low around 0)
also, we better use more of the input data..
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Axis/angle: Inverse problem

solution
from the data < > from R(0, 1)
0 Riz —Rz1 Riz — Ry 0 - on
R — RT = R21 — R12 0 R23 — R32 = 2sin6 1 0 —Tx
R31 — Riz  R3z — Ry3 0 —Ty  Tx 0
it follows .
Ir|[ =1 = sinf = iE \/(R12 — Ry1)? + (R13 — R31)? + (R23 — R33)? (*)
thus (**)

6 = atan2 {i \/(R12 — Ry1)? + (Ri3 — R31)? + (Ry3 — R33)%, Ry1 + Ry + R33 — 1}

see the slide
with its definition!

can be used only if

<4 | sinf # 0

test is made on (*)
using the data {R;;}
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Singular cases

(use when sin 6 = 0)

= if & = 0 from (**), there is for r (rotation axis undefined)
= if @ = +m from (**), then set sinf = 0,cos @ = —1 and solve

= R=2rrl —1]

Ty +/(Ryy + 1)/2 rr, = Ry/2 used to resolve
r=|5|=|+ /Ry + 1)/2 || with nr, =R,/2| < sign ambiguities
Y - 22 oz 13 = two solutions

Tz ryTy, = R,5/2 : _
L \/(R33 +1)/2 of opposite sign

homework: write a code that determines the two solutions (6, 1)

r—1 0 0 7

O 1 1

for R = NG JZ
1 1

V2 V2 o
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Unit quaternion

= to eliminate non-uniqueness and singular cases of the axis/angle (6, 1)
representation, the unit quaternion can be used

Q ={n,€} = {cos(06/2),sin(6/2) r}

a scalar 3-dim vector
= 12+ ||€]l? = 1 (thus, “unit ...”)
= (6,r)and (—6,—r) are associated to the same quaternion Q
= the rotation matrix R associated to a given quaternion Q is
2% +€2)—1 2(ege, —ne,)  2(exe, +ney,)
R(n,€) = | 2(ece, +ne,) 22 +€2)—1 2(e,€, —ney)
2(ece, —me,)  2(eye,+1mey) 2P +€2) -1
= no rotation is Q = {1, 0}, while the inverse rotation is Q = {n, —€}
unit quaternions are composed with special rules

_ T
QL *Qy ={Nny — €1€;3,M1€;, + 1261 + €, X€,}
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